Advertisements
Advertisements
प्रश्न
दर्शाइए कि `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1 है।
उत्तर
L.H.S = `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) * tan(30^circ - theta))`
= `(cos^2(45^circ + theta) + [sin{90^circ - (45^circ - theta)}]^2)/(tan(60^circ + theta) * cot{90^circ - (30^circ - theta)})` ...[∵ sin(90° – θ) = cos θ and cot(90° – θ) = tan θ]
= `(cos^2(45^circ + theta) + sin^2(45^circ + theta))/(tan(60^circ + theta) * cot(60^circ + theta))` ...[∵ sin2θ + cos2θ = 1]
= `1/(tan(60^circ + theta) * 1/(tan(60^circ + theta))` ...`[∵ cot θ = 1/tanθ]`
= 1
= R.H.S
APPEARS IN
संबंधित प्रश्न
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[संकेत: वाम पक्ष और दायाँ पक्ष को अलग - अलग सरल कीजिए।]
व्यंजक [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] का मान ______ है।
यदि sinA + sin2A = 1 है, तो व्यंजक (cos2A + cos4A) का मान ______ है।
cos θ = `(a^2 + b^2)/(2ab)` है, जहाँ a और b ऐसी दो भिन्न संख्याएँ हैं कि ab > 0 है।
यदि `sqrt(3)` tan θ = 1 है, तो sin2θ – cos2θ का मान ज्ञात कीजिए।
यदि 2sin2θ – cos2θ = 2 है, तो θ का मान ज्ञात कीजिए।
दर्शाइए की tan4θ + tan2θ = sec4θ – sec2θ है।
यदि tan θ + sec θ = l है, तो सिद्ध कीजिए कि sec θ = `(l^2 + 1)/(2l)` है।
सिद्ध कीजिए कि `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/(cos theta)` है।