मराठी

Cos θ = a2+b22ab है, जहाँ a और b ऐसी दो भिन्न संख्याएँ हैं कि ab > 0 है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

cos θ = `(a^2 + b^2)/(2ab)` है, जहाँ a और b ऐसी दो भिन्न संख्याएँ हैं कि ab > 0 है।

पर्याय

  • सत्य

  • असत्य

MCQ
चूक किंवा बरोबर

उत्तर

यह विधान असत्य है।

स्पष्टीकरण:

दिया गया है: a ≠ b और ab > 0

(क्योंकि गैर-ऋणात्मक वास्तविक संख्याओं की सूची का अंकगणितीय माध्य (AM) उसी सूची के ज्यामितीय माध्य (GM) से अधिक या उसके बराबर है)

⇒ AM > GM

यदि a और b ऐसी संख्याएँ हों, तब

AM = `(a + b)/2` और Gm = `sqrt(ab)`

यह मानकर कि cos θ = `(a^2 + b^2)/(2ab)` सत्य कथन है।

इसी प्रकार, a2 और b2 का AM और GM होगा,

AM = `(a^2 + b^2)/2` और GM = `sqrt(a^2 * b^2)`

तो, `(a^2 + b^2)/2 > sqrt(a^2 * b^2)`   ...(AM और GM संपत्ति द्वारा जैसा कि उत्तर में पहले बताया गया है)

⇒ `(a^2 + b^2)/2 > ab`

⇒ `(a^2 + b^2)/(2ab) > 1`

⇒ cos θ > 1  ...(हमारी धारणा से)

लेकिन यह संभव नहीं है, –1 ≤ cos θ ≤ 1

इस प्रकार, हमारी धारणा गलत है और `cos theta ≠ (a^2 + b^2)/(2ab)`

shaalaa.com
त्रिकोणमितीय सर्वसमिकाएँ
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: त्रिकोणमिति का परिचय और उसके अनुप्रयोग - प्रश्नावली 8.2 [पृष्ठ ९५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
पाठ 8 त्रिकोणमिति का परिचय और उसके अनुप्रयोग
प्रश्नावली 8.2 | Q 10. | पृष्ठ ९५

संबंधित प्रश्‍न

निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:

`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`


निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:

`(tantheta)/(1-cottheta) + (cottheta)/(1-tantheta) = 1+secthetacosec  theta`

[संकेत: व्यंजक को sin θ और cosθ के पदों में लिखिए]


निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A


यदि sinθ – cosθ = 0 है, तो (sin4θ + cos4θ) का मान ______ है।


यदि cosA + cos2A = 1 है, तो sin2A + sin4A = 1 है।   


(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ है।


यदि `sqrt(3)` tan θ = 1 है, तो sin2θ – cos2θ का मान ज्ञात कीजिए।


यदि 2sin2θ – cos2θ = 2 है, तो θ का मान ज्ञात कीजिए।  


यदि cosec θ + cot θ = p है, तो सिद्ध कीजिए कि cos θ = `(p^2 - 1)/(p^2 + 1)` है। 


यदि 1 + sin2θ = 3sinθ cosθ है, तो सिद्ध कीजिए कि tanθ = 1 या `1/2` है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×