Advertisements
Advertisements
प्रश्न
cos θ = `(a^2 + b^2)/(2ab)` है, जहाँ a और b ऐसी दो भिन्न संख्याएँ हैं कि ab > 0 है।
विकल्प
सत्य
असत्य
उत्तर
यह विधान असत्य है।
स्पष्टीकरण:
दिया गया है: a ≠ b और ab > 0
(क्योंकि गैर-ऋणात्मक वास्तविक संख्याओं की सूची का अंकगणितीय माध्य (AM) उसी सूची के ज्यामितीय माध्य (GM) से अधिक या उसके बराबर है)
⇒ AM > GM
यदि a और b ऐसी संख्याएँ हों, तब
AM = `(a + b)/2` और Gm = `sqrt(ab)`
यह मानकर कि cos θ = `(a^2 + b^2)/(2ab)` सत्य कथन है।
इसी प्रकार, a2 और b2 का AM और GM होगा,
AM = `(a^2 + b^2)/2` और GM = `sqrt(a^2 * b^2)`
तो, `(a^2 + b^2)/2 > sqrt(a^2 * b^2)` ...(AM और GM संपत्ति द्वारा जैसा कि उत्तर में पहले बताया गया है)
⇒ `(a^2 + b^2)/2 > ab`
⇒ `(a^2 + b^2)/(2ab) > 1`
⇒ cos θ > 1 ...(हमारी धारणा से)
लेकिन यह संभव नहीं है, –1 ≤ cos θ ≤ 1
इस प्रकार, हमारी धारणा गलत है और `cos theta ≠ (a^2 + b^2)/(2ab)`
APPEARS IN
संबंधित प्रश्न
`(1+tan^2A)/(1+cot^2A)` बराबर है:
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`(tantheta)/(1-cottheta) + (cottheta)/(1-tantheta) = 1+secthetacosec theta`
[संकेत: व्यंजक को sin θ और cosθ के पदों में लिखिए]
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
यदि cos 9α = sinα है और 9α < 90° है, तो tan 5α का मान ______ है।
यदि sinθ – cosθ = 0 है, तो (sin4θ + cos4θ) का मान ______ है।
sin(45° + θ) – cos(45° – θ) बराबर ______ है।
निम्नलिखित को सिद्ध कीजिए:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
यदि 2sin2θ – cos2θ = 2 है, तो θ का मान ज्ञात कीजिए।
यदि cosec θ + cot θ = p है, तो सिद्ध कीजिए कि cos θ = `(p^2 - 1)/(p^2 + 1)` है।
सिद्ध कीजिए कि `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta` है।