Advertisements
Advertisements
प्रश्न
निम्नलिखित को सिद्ध कीजिए:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
उत्तर
L.H.S:
`tanA/(1 + sec A) - tanA/(1 - sec A)`
हर का LCM लेते हुए,
= `(tanA(1 - sec A) - tanA(1 + sec A))/((1 + sec A)(1 - sec A))`
चूँकि, (1 + sec A)(1 – sec A) = 1 – sec2A
= `(tan A(1 - secA - 1 - sec A))/(1 - sec^2A)`
= `(tan A(-2 sec A))/(1 - sec^2 A)`
= `(2 tan A *sec A)/(sec^2 A - 1)`
चूँकि,
sec2A – tan2A = 1
sec2A – 1 = tan2A
= `(2 tan A * sec A)/(tan^2 A)`
चूँकि, sec A = `(1/cosA)` and tan A = `(sinA/cosA)`
= `(2secA)/tanA = (2cosA)/(cosA sinA)`
= `2/sinA`
= 2 cosec A ...`(∵ 1/sinA = "cosec" A)`
= R.H.S
अत: सिद्ध हुआ।
APPEARS IN
संबंधित प्रश्न
मान निकालिए
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
9 sec2 A − 9 tan2 A बराबर है:
निम्नलिखित सर्वसमिकाएँ सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
यदि cos 9α = sinα है और 9α < 90° है, तो tan 5α का मान ______ है।
यदि cosA + cos2A = 1 है, तो sin2A + sin4A = 1 है।
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ है।
सिद्ध कीजिए कि `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta` है।
यदि sinθ + 2cosθ = 1 दिया है, तो सिद्ध कीजिए कि 2sinθ – cosθ = 2 है।
यदि tan θ + sec θ = l है, तो सिद्ध कीजिए कि sec θ = `(l^2 + 1)/(2l)` है।
यदि a sinθ + b cosθ = c है, तो सिद्ध कीजिए कि a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)` है।