Advertisements
Advertisements
प्रश्न
निम्नलिखित को सिद्ध कीजिए:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
उत्तर
L.H.S:
`tanA/(1 + sec A) - tanA/(1 - sec A)`
हर का LCM लेते हुए,
= `(tanA(1 - sec A) - tanA(1 + sec A))/((1 + sec A)(1 - sec A))`
चूँकि, (1 + sec A)(1 – sec A) = 1 – sec2A
= `(tan A(1 - secA - 1 - sec A))/(1 - sec^2A)`
= `(tan A(-2 sec A))/(1 - sec^2 A)`
= `(2 tan A *sec A)/(sec^2 A - 1)`
चूँकि,
sec2A – tan2A = 1
sec2A – 1 = tan2A
= `(2 tan A * sec A)/(tan^2 A)`
चूँकि, sec A = `(1/cosA)` and tan A = `(sinA/cosA)`
= `(2secA)/tanA = (2cosA)/(cosA sinA)`
= `2/sinA`
= 2 cosec A ...`(∵ 1/sinA = "cosec" A)`
= R.H.S
अत: सिद्ध हुआ।
APPEARS IN
संबंधित प्रश्न
9 sec2 A − 9 tan2 A बराबर है:
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[संकेत: वाम पक्ष और दायाँ पक्ष को अलग - अलग सरल कीजिए।]
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
यदि sinA + sin2A = 1 है, तो व्यंजक (cos2A + cos4A) का मान ______ है।
यदि sinθ – cosθ = 0 है, तो (sin4θ + cos4θ) का मान ______ है।
2sinθ का मान `a + 1/a` हो सकता है, जहाँ a एक धनात्मक संख्या है और a ≠ 1 है।
निम्नलिखित को सिद्ध कीजिए:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ
यदि sinθ + 2cosθ = 1 दिया है, तो सिद्ध कीजिए कि 2sinθ – cosθ = 2 है।
यदि a sinθ + b cosθ = c है, तो सिद्ध कीजिए कि a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)` है।