Advertisements
Advertisements
प्रश्न
यदि sinθ + 2cosθ = 1 दिया है, तो सिद्ध कीजिए कि 2sinθ – cosθ = 2 है।
उत्तर
दिया गया है: sin θ + 2 cos θ = 1
दोनों तरफ से चौका,
(sin θ + 2 cos θ)2 = 1
⇒ sin2 θ + 4 cos2 θ + 4sin θ cos θ = 1
चूँकि, sin2 θ = 1 – cos2 θ and cos2 θ = 1 – sin2 θ
⇒ (1 – cos2 θ) + 4(1 – sin2 θ) + 4sin θ cos θ = 1
⇒ 1 – cos2 θ + 4 – 4 sin2 θ + 4sin θ cos θ = 1
⇒ – 4 sin2 θ – cos2 θ + 4sin θ cos θ = – 4
⇒ 4 sin2 θ + cos2 θ – 4sin θ cos θ = 4
हम जानते हैं कि,
a2 + b2 – 2ab = (a – b)2
तो, हमें मिलता है,
(2sin θ – cos θ)2 = 4
⇒ 2sin θ – cos θ = 2
अत: सिद्ध हुआ।
APPEARS IN
संबंधित प्रश्न
मान निकालिए
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
9 sec2 A − 9 tan2 A बराबर है:
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) बराबर है:
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`(tantheta)/(1-cottheta) + (cottheta)/(1-tantheta) = 1+secthetacosec theta`
[संकेत: व्यंजक को sin θ और cosθ के पदों में लिखिए]
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`
यदि sinθ – cosθ = 0 है, तो (sin4θ + cos4θ) का मान ______ है।
निम्नलिखित को सिद्ध कीजिए:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
यदि cosec θ + cot θ = p है, तो सिद्ध कीजिए कि cos θ = `(p^2 - 1)/(p^2 + 1)` है।
यदि sin θ + cos θ = p और sec θ + cosec θ = q है, तो सिद्ध कीजिए कि q(p2 – 1) = 2p है।