मराठी

यदि cosec θ + cot θ = p है, तो सिद्ध कीजिए कि cos θ = p2-1p2+1 है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि cosec θ + cot θ = p है, तो सिद्ध कीजिए कि cos θ = `(p^2 - 1)/(p^2 + 1)` है। 

बेरीज

उत्तर

प्रश्न के अनुसार,

cosec θ + cot θ = p

चूँकि, cosec θ = `1/(sintheta)` और cot θ = `(costheta)/(sintheta)`

`1/sintheta + costheta/sintheta` = p

`(1 + costheta)/(sintheta)` = p

L.H.S और R.H.S पर वर्ग बनाना,

`((1 + costheta)/(sintheta))^2` = p2

`(1 + cos^2 theta + 2 cos theta)/(sin^2 theta)` = p2

घटक और लाभांश नियम लागू करना,

`((1 + cos^2 theta + 2 cos theta) - sin^2 theta)/((1 + cos^2 theta + 2 cos theta) + sin^2 theta) = ("p"^2 - 1)/("p"^2 + 1)`

= `((1 - sin^2theta) + cos^2 theta + 2 cos theta)/(sin^2 theta + cos^2 theta + 1 + 2 cos theta) = ("p"^2 - 1)/("p"^2 + 1)`

चूँकि, 1 – sin2θ = cos2θ and sin2θ + cos2θ = 1

`(cos^2 theta + cos^2 theta + 2 cos theta)/(1 + 1 + 2 cos theta) = ("p"^2 - 1)/("p"^2 + 1)`

`(2 cos^2 theta + 2 cos theta)/(2 + 2 cos theta) = ("p"^2 - 1)/("p"^2 + 1)`

`(2 cos theta(cos theta + 1))/(2(cos theta + 1)) = ("p"^2 - 1)/("p"^2 + 1)`

cos θ = `("p"^2 - 1)/("p"^2 + 1)`

अतः सिद्ध हुआ।

shaalaa.com
त्रिकोणमितीय सर्वसमिकाएँ
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: त्रिकोणमिति का परिचय और उसके अनुप्रयोग - प्रश्नावली 8.4 [पृष्ठ १०१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
पाठ 8 त्रिकोणमिति का परिचय और उसके अनुप्रयोग
प्रश्नावली 8.4 | Q 1. | पृष्ठ १०१

संबंधित प्रश्‍न

मान निकालिए sin25° cos65° + cos25° sin65°


(1 + tan θ + sec θ) (1 + cot θ − cosec θ) बराबर है:


निम्नलिखित सर्वसमिकाएँ सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है:

`(cosec  θ  – cot θ)^2 = (1-cos theta)/(1 + cos theta)`


निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:

`(tantheta)/(1-cottheta) + (cottheta)/(1-tantheta) = 1+secthetacosec  theta`

[संकेत: व्यंजक को sin θ और cosθ के पदों में लिखिए]


निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:

`(1+ secA)/sec A = (sin^2A)/(1-cosA)`

[संकेत: वाम पक्ष और दायाँ पक्ष को अलग - अलग सरल कीजिए।]


निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A


व्यंजक [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] का मान ______ है।


यदि `sqrt(3)` tan θ = 1 है, तो sin2θ – cos2θ का मान ज्ञात कीजिए।


दर्शाइए कि  `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1 है।


यदि sinθ + 2cosθ = 1 दिया है, तो सिद्ध कीजिए कि 2sinθ – cosθ = 2 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×