हिंदी

यदि cosec θ + cot θ = p है, तो सिद्ध कीजिए कि cos θ = p2-1p2+1 है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि cosec θ + cot θ = p है, तो सिद्ध कीजिए कि cos θ = `(p^2 - 1)/(p^2 + 1)` है। 

योग

उत्तर

प्रश्न के अनुसार,

cosec θ + cot θ = p

चूँकि, cosec θ = `1/(sintheta)` और cot θ = `(costheta)/(sintheta)`

`1/sintheta + costheta/sintheta` = p

`(1 + costheta)/(sintheta)` = p

L.H.S और R.H.S पर वर्ग बनाना,

`((1 + costheta)/(sintheta))^2` = p2

`(1 + cos^2 theta + 2 cos theta)/(sin^2 theta)` = p2

घटक और लाभांश नियम लागू करना,

`((1 + cos^2 theta + 2 cos theta) - sin^2 theta)/((1 + cos^2 theta + 2 cos theta) + sin^2 theta) = ("p"^2 - 1)/("p"^2 + 1)`

= `((1 - sin^2theta) + cos^2 theta + 2 cos theta)/(sin^2 theta + cos^2 theta + 1 + 2 cos theta) = ("p"^2 - 1)/("p"^2 + 1)`

चूँकि, 1 – sin2θ = cos2θ and sin2θ + cos2θ = 1

`(cos^2 theta + cos^2 theta + 2 cos theta)/(1 + 1 + 2 cos theta) = ("p"^2 - 1)/("p"^2 + 1)`

`(2 cos^2 theta + 2 cos theta)/(2 + 2 cos theta) = ("p"^2 - 1)/("p"^2 + 1)`

`(2 cos theta(cos theta + 1))/(2(cos theta + 1)) = ("p"^2 - 1)/("p"^2 + 1)`

cos θ = `("p"^2 - 1)/("p"^2 + 1)`

अतः सिद्ध हुआ।

shaalaa.com
त्रिकोणमितीय सर्वसमिकाएँ
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: त्रिकोणमिति का परिचय और उसके अनुप्रयोग - प्रश्नावली 8.4 [पृष्ठ १०१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
अध्याय 8 त्रिकोणमिति का परिचय और उसके अनुप्रयोग
प्रश्नावली 8.4 | Q 1. | पृष्ठ १०१

संबंधित प्रश्न

मान निकालिए sin25° cos65° + cos25° sin65°


(1 + tan θ + sec θ) (1 + cot θ − cosec θ) बराबर है:


`(1+tan^2A)/(1+cot^2A)` बराबर है:


निम्नलिखित सर्वसमिकाएँ सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है:

`(cosec  θ  – cot θ)^2 = (1-cos theta)/(1 + cos theta)`


निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:

`(1+ secA)/sec A = (sin^2A)/(1-cosA)`

[संकेत: वाम पक्ष और दायाँ पक्ष को अलग - अलग सरल कीजिए।]


निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:

`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`


निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:

(cosec A – sin A) (sec A – cos A) = `1/(tanA+cotA)`

[संकेत: वाम पक्ष और दायाँ पक्ष को अलग - अलग सरल कीजिए।]


(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ है।


cos θ = `(a^2 + b^2)/(2ab)` है, जहाँ a और b ऐसी दो भिन्न संख्याएँ हैं कि ab > 0 है।


दर्शाइए कि  `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×