Advertisements
Advertisements
प्रश्न
यदि cosec θ + cot θ = p है, तो सिद्ध कीजिए कि cos θ = `(p^2 - 1)/(p^2 + 1)` है।
उत्तर
प्रश्न के अनुसार,
cosec θ + cot θ = p
चूँकि, cosec θ = `1/(sintheta)` और cot θ = `(costheta)/(sintheta)`
`1/sintheta + costheta/sintheta` = p
`(1 + costheta)/(sintheta)` = p
L.H.S और R.H.S पर वर्ग बनाना,
`((1 + costheta)/(sintheta))^2` = p2
`(1 + cos^2 theta + 2 cos theta)/(sin^2 theta)` = p2
घटक और लाभांश नियम लागू करना,
`((1 + cos^2 theta + 2 cos theta) - sin^2 theta)/((1 + cos^2 theta + 2 cos theta) + sin^2 theta) = ("p"^2 - 1)/("p"^2 + 1)`
= `((1 - sin^2theta) + cos^2 theta + 2 cos theta)/(sin^2 theta + cos^2 theta + 1 + 2 cos theta) = ("p"^2 - 1)/("p"^2 + 1)`
चूँकि, 1 – sin2θ = cos2θ and sin2θ + cos2θ = 1
`(cos^2 theta + cos^2 theta + 2 cos theta)/(1 + 1 + 2 cos theta) = ("p"^2 - 1)/("p"^2 + 1)`
`(2 cos^2 theta + 2 cos theta)/(2 + 2 cos theta) = ("p"^2 - 1)/("p"^2 + 1)`
`(2 cos theta(cos theta + 1))/(2(cos theta + 1)) = ("p"^2 - 1)/("p"^2 + 1)`
cos θ = `("p"^2 - 1)/("p"^2 + 1)`
अतः सिद्ध हुआ।
APPEARS IN
संबंधित प्रश्न
मान निकालिए sin25° cos65° + cos25° sin65°
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) बराबर है:
`(1+tan^2A)/(1+cot^2A)` बराबर है:
निम्नलिखित सर्वसमिकाएँ सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[संकेत: वाम पक्ष और दायाँ पक्ष को अलग - अलग सरल कीजिए।]
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
(cosec A – sin A) (sec A – cos A) = `1/(tanA+cotA)`
[संकेत: वाम पक्ष और दायाँ पक्ष को अलग - अलग सरल कीजिए।]
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ है।
cos θ = `(a^2 + b^2)/(2ab)` है, जहाँ a और b ऐसी दो भिन्न संख्याएँ हैं कि ab > 0 है।
दर्शाइए कि `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1 है।