Advertisements
Advertisements
प्रश्न
दर्शाइए की tan4θ + tan2θ = sec4θ – sec2θ है।
उत्तर
L.H.S = tan4θ + tan2θ
= tan2θ(tan2θ + 1)
= tan2θ.sec2θ ...[∵ sec2θ = tan2θ + 1]
= (sec2θ – 1).sec2θ ...[∵ tan2θ = sec2θ – 1]
= sec4θ – sec2θ
= R.H.S
APPEARS IN
संबंधित प्रश्न
`(1+tan^2A)/(1+cot^2A)` बराबर है:
यदि sinA + sin2A = 1 है, तो व्यंजक (cos2A + cos4A) का मान ______ है।
यदि sinθ – cosθ = 0 है, तो (sin4θ + cos4θ) का मान ______ है।
sin(45° + θ) – cos(45° – θ) बराबर ______ है।
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
निम्नलिखित को सिद्ध कीजिए:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
निम्नलिखित को सिद्ध कीजिए:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
दर्शाइए कि `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1 है।
सिद्ध कीजिए कि `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta` है।
यदि tan θ + sec θ = l है, तो सिद्ध कीजिए कि sec θ = `(l^2 + 1)/(2l)` है।