Advertisements
Advertisements
प्रश्न
sin(45° + θ) – cos(45° – θ) बराबर ______ है।
विकल्प
2cosθ
0
2sinθ
1
उत्तर
sin(45° + θ) – cos(45° – θ) बराबर 0 है।
स्पष्टीकरण:
sin(45° + θ) – cos(45° – θ)
= cos[90° – (45° + θ)] – cos(45° – θ) ...[∵ cos(90° – θ) = sinθ]
= cos(45° – θ) – cos(45° – θ)
= 0
APPEARS IN
संबंधित प्रश्न
`(1+tan^2A)/(1+cot^2A)` बराबर है:
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[संकेत: वाम पक्ष और दायाँ पक्ष को अलग - अलग सरल कीजिए।]
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`
यदि sin θ = `a/b` दिया है, तो cos θ से बराबर ______ है।
यदि sinA + sin2A = 1 है, तो व्यंजक (cos2A + cos4A) का मान ______ है।
cos θ = `(a^2 + b^2)/(2ab)` है, जहाँ a और b ऐसी दो भिन्न संख्याएँ हैं कि ab > 0 है।
निम्नलिखित को सिद्ध कीजिए:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ
यदि sin θ + cos θ = p और sec θ + cosec θ = q है, तो सिद्ध कीजिए कि q(p2 – 1) = 2p है।
यदि a sinθ + b cosθ = c है, तो सिद्ध कीजिए कि a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)` है।