Advertisements
Advertisements
Question
sin(45° + θ) – cos(45° – θ) बराबर ______ है।
Options
2cosθ
0
2sinθ
1
Solution
sin(45° + θ) – cos(45° – θ) बराबर 0 है।
स्पष्टीकरण:
sin(45° + θ) – cos(45° – θ)
= cos[90° – (45° + θ)] – cos(45° – θ) ...[∵ cos(90° – θ) = sinθ]
= cos(45° – θ) – cos(45° – θ)
= 0
APPEARS IN
RELATED QUESTIONS
मान निकालिए sin25° cos65° + cos25° sin65°
`(1+tan^2A)/(1+cot^2A)` बराबर है:
निम्नलिखित सर्वसमिकाएँ सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[संकेत: वाम पक्ष और दायाँ पक्ष को अलग - अलग सरल कीजिए।]
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
निम्नलिखित को सिद्ध कीजिए:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ
निम्नलिखित को सिद्ध कीजिए:
(sin α + cos α) (tan α + cot α) = sec α + cosec α
यदि 2sin2θ – cos2θ = 2 है, तो θ का मान ज्ञात कीजिए।
यदि cosec θ + cot θ = p है, तो सिद्ध कीजिए कि cos θ = `(p^2 - 1)/(p^2 + 1)` है।