Advertisements
Advertisements
Question
यदि 2sin2θ – cos2θ = 2 है, तो θ का मान ज्ञात कीजिए।
Solution
दिया गया है,
2sin2θ – cos2θ = 2
⇒ 2sin2θ – (1 – sin2θ) = 2 ...[∵ sin2θ + cos2θ = 1]
⇒ 2sin2θ + sin2θ – 1 = 2
⇒ 3sin2θ = 3
⇒ sin2θ = 1
⇒ sinθ = 1 = sin 90° ...[∵ sin 90° = 1]
⇒ θ = 90°
APPEARS IN
RELATED QUESTIONS
(secA + tanA) (1 − sinA) बराबर है:
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`(tantheta)/(1-cottheta) + (cottheta)/(1-tantheta) = 1+secthetacosec theta`
[संकेत: व्यंजक को sin θ और cosθ के पदों में लिखिए]
व्यंजक [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] का मान ______ है।
यदि cosA + cos2A = 1 है, तो sin2A + sin4A = 1 है।
2sinθ का मान `a + 1/a` हो सकता है, जहाँ a एक धनात्मक संख्या है और a ≠ 1 है।
निम्नलिखित को सिद्ध कीजिए:
(sin α + cos α) (tan α + cot α) = sec α + cosec α
निम्नलिखित को सिद्ध कीजिए:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
(1 + tan2θ)(1 – sinθ)(1 + sinθ) को सरल कीजिए।
दर्शाइए की tan4θ + tan2θ = sec4θ – sec2θ है।
यदि sin θ + cos θ = p और sec θ + cosec θ = q है, तो सिद्ध कीजिए कि q(p2 – 1) = 2p है।