Advertisements
Advertisements
प्रश्न
यदि 2sin2θ – cos2θ = 2 है, तो θ का मान ज्ञात कीजिए।
उत्तर
दिया गया है,
2sin2θ – cos2θ = 2
⇒ 2sin2θ – (1 – sin2θ) = 2 ...[∵ sin2θ + cos2θ = 1]
⇒ 2sin2θ + sin2θ – 1 = 2
⇒ 3sin2θ = 3
⇒ sin2θ = 1
⇒ sinθ = 1 = sin 90° ...[∵ sin 90° = 1]
⇒ θ = 90°
APPEARS IN
संबंधित प्रश्न
मान निकालिए sin25° cos65° + cos25° sin65°
9 sec2 A − 9 tan2 A बराबर है:
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
cos θ = `(a^2 + b^2)/(2ab)` है, जहाँ a और b ऐसी दो भिन्न संख्याएँ हैं कि ab > 0 है।
निम्नलिखित को सिद्ध कीजिए:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
(1 + tan2θ)(1 – sinθ)(1 + sinθ) को सरल कीजिए।
सिद्ध कीजिए कि `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta` है।
सिद्ध कीजिए कि `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/(cos theta)` है।