Advertisements
Advertisements
प्रश्न
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
पर्याय
सत्य
असत्य
उत्तर
यह कथन सत्य है ।
स्पष्टीकरण:
`sqrt((1 - cos^2 theta) sec^2 theta)`
= `sqrt(sin^2 theta * sec^2 theta)` ...[∵ sin2θ + cos2θ = 1]
= `sqrt(sin^2 theta * 1/(cos^2 theta)` ...`[∵ sec theta = 1/(cos theta), tan theta = (sin theta)/(cos theta)]`
= `sqrt(tan^2 theta)`
= tan θ
APPEARS IN
संबंधित प्रश्न
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) बराबर है:
`(1+tan^2A)/(1+cot^2A)` बराबर है:
निम्नलिखित सर्वसमिकाएँ सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
यदि cosA + cos2A = 1 है, तो sin2A + sin4A = 1 है।
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ है।
दर्शाइए की tan4θ + tan2θ = sec4θ – sec2θ है।
सिद्ध कीजिए कि `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta` है।
यदि sinθ + 2cosθ = 1 दिया है, तो सिद्ध कीजिए कि 2sinθ – cosθ = 2 है।
सिद्ध कीजिए कि `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/(cos theta)` है।