Advertisements
Advertisements
प्रश्न
(1 + tan2θ)(1 – sinθ)(1 + sinθ) को सरल कीजिए।
उत्तर
(1 + tan2θ)(1 – sinθ)(1 + sinθ)
= (1 + tan2θ)(1 – sin2θ) ...[∵ (a – b)(a + b) = a2 – b2]
= sec2θ . cos2θ ...[∵ 1 + tan2θ = sec2θ and cos2θ + sin2θ = 1]
= `1/(cos^2 theta) * cos^2 theta` ...`[∵ sec theta = 1/(costheta)]`
= 1
APPEARS IN
संबंधित प्रश्न
9 sec2 A − 9 tan2 A बराबर है:
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
व्यंजक [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] का मान ______ है।
यदि sin θ = `a/b` दिया है, तो cos θ से बराबर ______ है।
यदि cos 9α = sinα है और 9α < 90° है, तो tan 5α का मान ______ है।
2sinθ का मान `a + 1/a` हो सकता है, जहाँ a एक धनात्मक संख्या है और a ≠ 1 है।
cos θ = `(a^2 + b^2)/(2ab)` है, जहाँ a और b ऐसी दो भिन्न संख्याएँ हैं कि ab > 0 है।
यदि 2sin2θ – cos2θ = 2 है, तो θ का मान ज्ञात कीजिए।
यदि cosec θ + cot θ = p है, तो सिद्ध कीजिए कि cos θ = `(p^2 - 1)/(p^2 + 1)` है।
यदि 1 + sin2θ = 3sinθ cosθ है, तो सिद्ध कीजिए कि tanθ = 1 या `1/2` है।