Advertisements
Advertisements
प्रश्न
(1 + tan2θ)(1 – sinθ)(1 + sinθ) को सरल कीजिए।
उत्तर
(1 + tan2θ)(1 – sinθ)(1 + sinθ)
= (1 + tan2θ)(1 – sin2θ) ...[∵ (a – b)(a + b) = a2 – b2]
= sec2θ . cos2θ ...[∵ 1 + tan2θ = sec2θ and cos2θ + sin2θ = 1]
= `1/(cos^2 theta) * cos^2 theta` ...`[∵ sec theta = 1/(costheta)]`
= 1
APPEARS IN
संबंधित प्रश्न
निम्नलिखित सर्वसमिकाएँ सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`(tantheta)/(1-cottheta) + (cottheta)/(1-tantheta) = 1+secthetacosec theta`
[संकेत: व्यंजक को sin θ और cosθ के पदों में लिखिए]
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`
यदि sin θ = `a/b` दिया है, तो cos θ से बराबर ______ है।
यदि cos (α + β) = 0 हो, तो sin (α – β) को निम्नलिखित के रूप में बदला जा सकता ______ है।
यदि cosA + cos2A = 1 है, तो sin2A + sin4A = 1 है।
cos θ = `(a^2 + b^2)/(2ab)` है, जहाँ a और b ऐसी दो भिन्न संख्याएँ हैं कि ab > 0 है।
दर्शाइए की tan4θ + tan2θ = sec4θ – sec2θ है।
यदि a sinθ + b cosθ = c है, तो सिद्ध कीजिए कि a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)` है।