Advertisements
Advertisements
प्रश्न
यदि a sinθ + b cosθ = c है, तो सिद्ध कीजिए कि a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)` है।
उत्तर
मान लें कि,
a sin θ + b cos θ = c
दोनों पक्षों को वर्ग करने पर,
(a . sin θ + cos θ . b)2 = c2
⇒ a2sin2θ + b2cos2θ + 2ab sin θ . cos θ = c2 ...[∵ (x + y)2 = x2 + 2xy + y2]
⇒ a2(1 – cos2θ) + b2(1 – sin2θ) + 2ab sinθ . cosθ = c2 ...[∵ sin2θ + cos2θ = 1]
⇒ a2 – a2 cos2θ + b2 – b2sin2θ + 2ab sinθ . cosθ = c2
⇒ a2 + b2 – c2 = a2cos2θ + b2sin2θ – 2ab sinθ . cosθ
⇒ (a2 + b2 – c2) = (a cos θ – b sin θ)2 ...[∵ a2 + b2 – 2ab = (a – b)2]
⇒ (a cos θ – b sin θ)2 = a2 + b2 – c2
⇒ a cos θ – b sin θ = `sqrt(a^2 + b^2 + c^2)`
अत: सिद्ध हुआ।
APPEARS IN
संबंधित प्रश्न
मान निकालिए
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
9 sec2 A − 9 tan2 A बराबर है:
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) बराबर है:
निम्नलिखित सर्वसमिकाएँ सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
यदि sinA + sin2A = 1 है, तो व्यंजक (cos2A + cos4A) का मान ______ है।
यदि sinθ – cosθ = 0 है, तो (sin4θ + cos4θ) का मान ______ है।
sin(45° + θ) – cos(45° – θ) बराबर ______ है।
यदि cosA + cos2A = 1 है, तो sin2A + sin4A = 1 है।
2sinθ का मान `a + 1/a` हो सकता है, जहाँ a एक धनात्मक संख्या है और a ≠ 1 है।
यदि tan θ + sec θ = l है, तो सिद्ध कीजिए कि sec θ = `(l^2 + 1)/(2l)` है।