English

यदि a sinθ + b cosθ = c है, तो सिद्ध कीजिए कि a cosθ – b sinθ = a2+b2-c2 है। - Mathematics (गणित)

Advertisements
Advertisements

Question

यदि a sinθ + b cosθ = c है, तो सिद्ध कीजिए कि  a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)` है।

Sum

Solution

मान लें कि,

a sin θ + b cos θ = c

दोनों पक्षों को वर्ग करने पर,

(a . sin θ + cos θ . b)2 = c2

⇒ a2sin2θ + b2cos2θ + 2ab sin θ . cos θ = c2 ...[∵ (x + y)2 = x2 + 2xy + y2]

⇒ a2(1 – cos2θ) + b2(1 – sin2θ) + 2ab sinθ . cosθ = c2 ...[∵ sin2θ + cos2θ = 1]

⇒ a2 – a2 cos2θ + b2 – b2sin2θ + 2ab sinθ . cosθ = c2

⇒ a2 + b2 – c2 = a2cos2θ + b2sin2θ – 2ab sinθ . cosθ

⇒ (a2 + b2 – c2) = (a cos θ – b sin θ)2 ...[∵ a2 + b2 – 2ab = (a – b)2]

⇒ (a cos θ – b sin θ)2 = a2 + b2 – c2

⇒ a cos θ – b sin θ = `sqrt(a^2 + b^2 + c^2)`

अत: सिद्ध हुआ।

shaalaa.com
त्रिकोणमितीय सर्वसमिकाएँ
  Is there an error in this question or solution?
Chapter 8: त्रिकोणमिति का परिचय और उसके अनुप्रयोग - प्रश्नावली 8.4 [Page 102]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 8 त्रिकोणमिति का परिचय और उसके अनुप्रयोग
प्रश्नावली 8.4 | Q 11. | Page 102

RELATED QUESTIONS

(secA + tanA) (1 − sinA) बराबर है:


`(1+tan^2A)/(1+cot^2A)` बराबर है:


निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:

सर्वसमिका cosec2 A = 1 + cot2 A को लागू करके

`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA`


निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A


यदि cos (α + β) = 0 हो, तो sin (α – β) को निम्नलिखित के रूप में बदला जा सकता ______ है। 


यदि sinA + sin2A = 1 है, तो व्यंजक (cos2A + cos4A) का मान ______ है।


sin(45° + θ) – cos(45° –  θ) बराबर ______ है।


2sinθ का मान `a + 1/a` हो सकता है, जहाँ a एक धनात्मक संख्या है और a ≠ 1 है।


निम्नलिखित को सिद्ध कीजिए:

(sin α + cos α) (tan α + cot α) = sec α + cosec α


(1 + tan2θ)(1 – sinθ)(1 + sinθ) को सरल कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×