English

निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं: सर्वसमिका cosec2 A = 1 + cot2 A को लागू करके cosA-sinA+1cosA+sinA-1=cosecA+cotA - Mathematics (गणित)

Advertisements
Advertisements

Question

निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:

सर्वसमिका cosec2 A = 1 + cot2 A को लागू करके

`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA`

Sum

Solution

`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA`

cosec2A = 1 + cot2A, का उपयोग करते हुए,

L.H.S = `(cos A-sinA+1)/(cosA+sinA-1)`

= `(cosA/sinA-sinA/sinA+1/sinA)/(cosA/sinA+sinA/sinA+1/sinA)`

= `(cotA-1+cosec  A)/(cotA+1-cosec  A)`

= `({(cotA)-(1-cosec  A)}{(cotA)-(1-cosec  A)})/({(cotA)+(1-cosec  A)}{(cotA)-(1-cosec  A)})`

= `(cot A - 1 + cosecA)^2/((cotA)^2-(1-cosecA)^2)`

= `(cot^2A+1+cosec^2A-2cotA-2cosec  A+2cotAcosec  A)/(cot^2A-(1+cosec^2  A-2cosec  A))`

= `(2cosec^2  A+2cotAcosec  A-2cotA-2cosec  A)/(cot^2A-1-1cosec^2  A+2cosec  A)`

= `(2cosec  A(cosecA+cotA)-2(cotA+cosec  A))/(cot^2A-cosec^2A-1+2cosec  A)`

= `((cosec  A+cotA)(2cosec  A-2))/(-1-1+2cosec  A)`

= `((cosec  A+cotA)(2cosec  A-2))/(2cosec  A-2)`

= cosec A + cot A

= R.H.S

shaalaa.com
त्रिकोणमितीय सर्वसमिकाएँ
  Is there an error in this question or solution?
Chapter 8: त्रिकोणमिति का परिचय - प्रश्नावली 8.4 [Page 214]

APPEARS IN

NCERT Mathematics [Hindi] Class 10
Chapter 8 त्रिकोणमिति का परिचय
प्रश्नावली 8.4 | Q 5. (v) | Page 214

RELATED QUESTIONS

मान निकालिए

`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`


(secA + tanA) (1 − sinA) बराबर है:


निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:

`sqrt((1+sinA)/(1-sinA)) = secA + tanA`


निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:

`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`


यदि cos (α + β) = 0 हो, तो sin (α – β) को निम्नलिखित के रूप में बदला जा सकता ______ है। 


यदि sinA + sin2A = 1 है, तो व्यंजक (cos2A + cos4A) का मान ______ है।


sin(45° + θ) – cos(45° –  θ) बराबर ______ है।


cos θ = `(a^2 + b^2)/(2ab)` है, जहाँ a और b ऐसी दो भिन्न संख्याएँ हैं कि ab > 0 है।


यदि cosec θ + cot θ = p है, तो सिद्ध कीजिए कि cos θ = `(p^2 - 1)/(p^2 + 1)` है। 


सिद्ध कीजिए कि `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/(cos theta)` है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×