Advertisements
Advertisements
प्रश्न
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
सर्वसमिका cosec2 A = 1 + cot2 A को लागू करके
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA`
उत्तर
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA`
cosec2A = 1 + cot2A, का उपयोग करते हुए,
L.H.S = `(cos A-sinA+1)/(cosA+sinA-1)`
= `(cosA/sinA-sinA/sinA+1/sinA)/(cosA/sinA+sinA/sinA+1/sinA)`
= `(cotA-1+cosec A)/(cotA+1-cosec A)`
= `({(cotA)-(1-cosec A)}{(cotA)-(1-cosec A)})/({(cotA)+(1-cosec A)}{(cotA)-(1-cosec A)})`
= `(cot A - 1 + cosecA)^2/((cotA)^2-(1-cosecA)^2)`
= `(cot^2A+1+cosec^2A-2cotA-2cosec A+2cotAcosec A)/(cot^2A-(1+cosec^2 A-2cosec A))`
= `(2cosec^2 A+2cotAcosec A-2cotA-2cosec A)/(cot^2A-1-1cosec^2 A+2cosec A)`
= `(2cosec A(cosecA+cotA)-2(cotA+cosec A))/(cot^2A-cosec^2A-1+2cosec A)`
= `((cosec A+cotA)(2cosec A-2))/(-1-1+2cosec A)`
= `((cosec A+cotA)(2cosec A-2))/(2cosec A-2)`
= cosec A + cot A
= R.H.S
APPEARS IN
संबंधित प्रश्न
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`
व्यंजक [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] का मान ______ है।
2sinθ का मान `a + 1/a` हो सकता है, जहाँ a एक धनात्मक संख्या है और a ≠ 1 है।
निम्नलिखित को सिद्ध कीजिए:
(sin α + cos α) (tan α + cot α) = sec α + cosec α
निम्नलिखित को सिद्ध कीजिए:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
यदि 2sin2θ – cos2θ = 2 है, तो θ का मान ज्ञात कीजिए।
यदि sin θ + cos θ = p और sec θ + cosec θ = q है, तो सिद्ध कीजिए कि q(p2 – 1) = 2p है।
यदि a sinθ + b cosθ = c है, तो सिद्ध कीजिए कि a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)` है।
सिद्ध कीजिए कि `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/(cos theta)` है।