Advertisements
Advertisements
प्रश्न
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
सर्वसमिका cosec2 A = 1 + cot2 A को लागू करके
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA`
उत्तर
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA`
cosec2A = 1 + cot2A, का उपयोग करते हुए,
L.H.S = `(cos A-sinA+1)/(cosA+sinA-1)`
= `(cosA/sinA-sinA/sinA+1/sinA)/(cosA/sinA+sinA/sinA+1/sinA)`
= `(cotA-1+cosec A)/(cotA+1-cosec A)`
= `({(cotA)-(1-cosec A)}{(cotA)-(1-cosec A)})/({(cotA)+(1-cosec A)}{(cotA)-(1-cosec A)})`
= `(cot A - 1 + cosecA)^2/((cotA)^2-(1-cosecA)^2)`
= `(cot^2A+1+cosec^2A-2cotA-2cosec A+2cotAcosec A)/(cot^2A-(1+cosec^2 A-2cosec A))`
= `(2cosec^2 A+2cotAcosec A-2cotA-2cosec A)/(cot^2A-1-1cosec^2 A+2cosec A)`
= `(2cosec A(cosecA+cotA)-2(cotA+cosec A))/(cot^2A-cosec^2A-1+2cosec A)`
= `((cosec A+cotA)(2cosec A-2))/(-1-1+2cosec A)`
= `((cosec A+cotA)(2cosec A-2))/(2cosec A-2)`
= cosec A + cot A
= R.H.S
APPEARS IN
संबंधित प्रश्न
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[संकेत: वाम पक्ष और दायाँ पक्ष को अलग - अलग सरल कीजिए।]
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
यदि cos (α + β) = 0 हो, तो sin (α – β) को निम्नलिखित के रूप में बदला जा सकता ______ है।
sin(45° + θ) – cos(45° – θ) बराबर ______ है।
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ है।
निम्नलिखित को सिद्ध कीजिए:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ
निम्नलिखित को सिद्ध कीजिए:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
दर्शाइए की tan4θ + tan2θ = sec4θ – sec2θ है।
यदि cosec θ + cot θ = p है, तो सिद्ध कीजिए कि cos θ = `(p^2 - 1)/(p^2 + 1)` है।