Advertisements
Advertisements
प्रश्न
यदि cos (α + β) = 0 हो, तो sin (α – β) को निम्नलिखित के रूप में बदला जा सकता ______ है।
विकल्प
cos β
cos 2β
sin α
sin 2α
उत्तर
यदि cos (α + β) = 0 हो, तो sin (α – β) को निम्नलिखित के रूप में बदला जा सकता cos 2β है।
स्पष्टीकरण:
प्रश्न के अनुसार,
cos(α + β) = 0
चूँकि, cos 90° = 0
हम लिख सकते हैं,
cos(α + β) = cos 90°
L.H.S और R.H.S पर कोज्या समीकरण की तुलना करके,
हम पाते हैं,
(α + β) = 90°
α = 90° – β
अब हमें sin(α – β) को कम करने की आवश्यकता है,
तो, हम लेते हैं,
sin(α – β) = sin(90° – β – β) = sin(90° – 2β)
sin(90° – θ) = cos θ
तो, sin(90° – 2β) = cos 2β
इसलिए, sin(α – β) = cos 2β
APPEARS IN
संबंधित प्रश्न
9 sec2 A − 9 tan2 A बराबर है:
(secA + tanA) (1 − sinA) बराबर है:
निम्नलिखित सर्वसमिकाएँ सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`(tantheta)/(1-cottheta) + (cottheta)/(1-tantheta) = 1+secthetacosec theta`
[संकेत: व्यंजक को sin θ और cosθ के पदों में लिखिए]
sin(45° + θ) – cos(45° – θ) बराबर ______ है।
निम्नलिखित को सिद्ध कीजिए:
(sin α + cos α) (tan α + cot α) = sec α + cosec α
यदि 2sin2θ – cos2θ = 2 है, तो θ का मान ज्ञात कीजिए।
सिद्ध कीजिए कि `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta` है।
यदि 1 + sin2θ = 3sinθ cosθ है, तो सिद्ध कीजिए कि tanθ = 1 या `1/2` है।
यदि sin θ + cos θ = p और sec θ + cosec θ = q है, तो सिद्ध कीजिए कि q(p2 – 1) = 2p है।