Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए कि `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta` है।
उत्तर
L.H.S = `sqrt(sec^2 theta + "cosec"^2 theta)`
= `sqrt(1/cos^2 theta + 1/(sin^2 theta))` ...`[∵ sec^2 theta = 1/(cos^2 theta) "and" "cosec"^2 theta = 1/(sin^2 theta)]`
= `sqrt((sin^2 theta + cos^2 theta)/(sin^2 theta * cos^2 theta))`
= `sqrt(1/(sin^2 theta * cos^2 theta))` ...[∵ sin2θ + cos2θ = 1]
= `1/(sin theta * cos theta)`
= `(sin^2 theta + cos^2 theta)/(sin theta * cos theta)` ...[∵ 1 = sin2θ + cos2θ]
= `(sin^2 theta)/(sin theta * cos theta) + (cos^2 theta)/(sin theta * cos theta)`
= `sintheta/costheta + cos theta/sintheta` ...`[∵ tan theta = sin theta/cos theta "and" cot theta = costheta/sin theta]`
= tan θ + cot θ
= R.H.S
अतः सिद्ध हुआ।
APPEARS IN
संबंधित प्रश्न
मान निकालिए
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) बराबर है:
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
(cosec A – sin A) (sec A – cos A) = `1/(tanA+cotA)`
[संकेत: वाम पक्ष और दायाँ पक्ष को अलग - अलग सरल कीजिए।]
यदि cosA + cos2A = 1 है, तो sin2A + sin4A = 1 है।
निम्नलिखित को सिद्ध कीजिए:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ
यदि `sqrt(3)` tan θ = 1 है, तो sin2θ – cos2θ का मान ज्ञात कीजिए।
दर्शाइए कि `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1 है।
यदि sinθ + 2cosθ = 1 दिया है, तो सिद्ध कीजिए कि 2sinθ – cosθ = 2 है।