Advertisements
Advertisements
प्रश्न
मान निकालिए
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
उत्तर
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^@73^@)`
`(= [sin(90^@ - 27^@)]^2+sin^2 27^@)/([cos(90^@ - 73^@)]^2 + cos^2 73^@)`
`= ([cos27^@]^2 + sin^2 27^@)/([sin 73^@]^2 + cos^2 73^@)`
`= (cos^2 27^@ + sin^2 27^@)/(sin^2 73^@+ cos^2 73^@)`
= 1/1 (As sin2A + cos2A = 1)
= 1
APPEARS IN
संबंधित प्रश्न
(secA + tanA) (1 − sinA) बराबर है:
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
(cosec A – sin A) (sec A – cos A) = `1/(tanA+cotA)`
[संकेत: वाम पक्ष और दायाँ पक्ष को अलग - अलग सरल कीजिए।]
व्यंजक [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] का मान ______ है।
यदि cos (α + β) = 0 हो, तो sin (α – β) को निम्नलिखित के रूप में बदला जा सकता ______ है।
यदि cosA + cos2A = 1 है, तो sin2A + sin4A = 1 है।
(1 + tan2θ)(1 – sinθ)(1 + sinθ) को सरल कीजिए।
दर्शाइए की tan4θ + tan2θ = sec4θ – sec2θ है।
सिद्ध कीजिए कि `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta` है।
यदि 1 + sin2θ = 3sinθ cosθ है, तो सिद्ध कीजिए कि tanθ = 1 या `1/2` है।
यदि sin θ + cos θ = p और sec θ + cosec θ = q है, तो सिद्ध कीजिए कि q(p2 – 1) = 2p है।