Advertisements
Advertisements
प्रश्न
मान निकालिए
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
उत्तर
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^@73^@)`
`(= [sin(90^@ - 27^@)]^2+sin^2 27^@)/([cos(90^@ - 73^@)]^2 + cos^2 73^@)`
`= ([cos27^@]^2 + sin^2 27^@)/([sin 73^@]^2 + cos^2 73^@)`
`= (cos^2 27^@ + sin^2 27^@)/(sin^2 73^@+ cos^2 73^@)`
= 1/1 (As sin2A + cos2A = 1)
= 1
APPEARS IN
संबंधित प्रश्न
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) बराबर है:
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[संकेत: वाम पक्ष और दायाँ पक्ष को अलग - अलग सरल कीजिए।]
यदि cos 9α = sinα है और 9α < 90° है, तो tan 5α का मान ______ है।
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
2sinθ का मान `a + 1/a` हो सकता है, जहाँ a एक धनात्मक संख्या है और a ≠ 1 है।
निम्नलिखित को सिद्ध कीजिए:
(sin α + cos α) (tan α + cot α) = sec α + cosec α
(1 + tan2θ)(1 – sinθ)(1 + sinθ) को सरल कीजिए।
यदि 2sin2θ – cos2θ = 2 है, तो θ का मान ज्ञात कीजिए।
सिद्ध कीजिए कि `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta` है।
यदि tan θ + sec θ = l है, तो सिद्ध कीजिए कि sec θ = `(l^2 + 1)/(2l)` है।