Advertisements
Advertisements
प्रश्न
यदि tan θ + sec θ = l है, तो सिद्ध कीजिए कि sec θ = `(l^2 + 1)/(2l)` है।
उत्तर
दिया गया है,
tan θ + sec θ = l ...(i)
⇒ `((tan theta + sec theta)(sec theta - tan theta))/((sec theta - tan theta))` = l ...[अंश और हर L.H.S पर (sec θ – tan θ) से गुणा करें]
⇒ `((sec^2 theta - tan^2 theta))/((sec theta - tan theta))` = l
⇒ `1/(sec theta - tan theta)` = l ...[∵ sec2θ – tan2θ = 1]
⇒ sec θ – tan θ = `1/l` ...(ii)
समीकरण (i) और (ii) जोड़ने पर, हम पाते हैं।
2 sec θ = `l + 1/l`
⇒ sec θ = `(l^2 + 1)/(2l)`
अतः सिद्ध हुआ।
APPEARS IN
संबंधित प्रश्न
मान निकालिए
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
मान निकालिए sin25° cos65° + cos25° sin65°
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) बराबर है:
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[संकेत: वाम पक्ष और दायाँ पक्ष को अलग - अलग सरल कीजिए।]
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
निम्नलिखित को सिद्ध कीजिए:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ
निम्नलिखित को सिद्ध कीजिए:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
यदि 2sin2θ – cos2θ = 2 है, तो θ का मान ज्ञात कीजिए।
यदि sinθ + 2cosθ = 1 दिया है, तो सिद्ध कीजिए कि 2sinθ – cosθ = 2 है।