Advertisements
Advertisements
Question
यदि tan θ + sec θ = l है, तो सिद्ध कीजिए कि sec θ = `(l^2 + 1)/(2l)` है।
Solution
दिया गया है,
tan θ + sec θ = l ...(i)
⇒ `((tan theta + sec theta)(sec theta - tan theta))/((sec theta - tan theta))` = l ...[अंश और हर L.H.S पर (sec θ – tan θ) से गुणा करें]
⇒ `((sec^2 theta - tan^2 theta))/((sec theta - tan theta))` = l
⇒ `1/(sec theta - tan theta)` = l ...[∵ sec2θ – tan2θ = 1]
⇒ sec θ – tan θ = `1/l` ...(ii)
समीकरण (i) और (ii) जोड़ने पर, हम पाते हैं।
2 sec θ = `l + 1/l`
⇒ sec θ = `(l^2 + 1)/(2l)`
अतः सिद्ध हुआ।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित सर्वसमिकाएँ सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`(tantheta)/(1-cottheta) + (cottheta)/(1-tantheta) = 1+secthetacosec theta`
[संकेत: व्यंजक को sin θ और cosθ के पदों में लिखिए]
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
यदि sin θ = `a/b` दिया है, तो cos θ से बराबर ______ है।
यदि cos (α + β) = 0 हो, तो sin (α – β) को निम्नलिखित के रूप में बदला जा सकता ______ है।
यदि sinA + sin2A = 1 है, तो व्यंजक (cos2A + cos4A) का मान ______ है।
sin(45° + θ) – cos(45° – θ) बराबर ______ है।
(1 + tan2θ)(1 – sinθ)(1 + sinθ) को सरल कीजिए।
दर्शाइए कि `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1 है।
सिद्ध कीजिए कि `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/(cos theta)` है।