Advertisements
Advertisements
प्रश्न
यदि tan θ + sec θ = l है, तो सिद्ध कीजिए कि sec θ = `(l^2 + 1)/(2l)` है।
उत्तर
दिया गया है,
tan θ + sec θ = l ...(i)
⇒ `((tan theta + sec theta)(sec theta - tan theta))/((sec theta - tan theta))` = l ...[अंश और हर L.H.S पर (sec θ – tan θ) से गुणा करें]
⇒ `((sec^2 theta - tan^2 theta))/((sec theta - tan theta))` = l
⇒ `1/(sec theta - tan theta)` = l ...[∵ sec2θ – tan2θ = 1]
⇒ sec θ – tan θ = `1/l` ...(ii)
समीकरण (i) और (ii) जोड़ने पर, हम पाते हैं।
2 sec θ = `l + 1/l`
⇒ sec θ = `(l^2 + 1)/(2l)`
अतः सिद्ध हुआ।
APPEARS IN
संबंधित प्रश्न
मान निकालिए
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
(cosec A – sin A) (sec A – cos A) = `1/(tanA+cotA)`
[संकेत: वाम पक्ष और दायाँ पक्ष को अलग - अलग सरल कीजिए।]
व्यंजक [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] का मान ______ है।
cos θ = `(a^2 + b^2)/(2ab)` है, जहाँ a और b ऐसी दो भिन्न संख्याएँ हैं कि ab > 0 है।
निम्नलिखित को सिद्ध कीजिए:
(sin α + cos α) (tan α + cot α) = sec α + cosec α
दर्शाइए की tan4θ + tan2θ = sec4θ – sec2θ है।
सिद्ध कीजिए कि `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta` है।
यदि 1 + sin2θ = 3sinθ cosθ है, तो सिद्ध कीजिए कि tanθ = 1 या `1/2` है।
यदि a sinθ + b cosθ = c है, तो सिद्ध कीजिए कि a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)` है।