Advertisements
Advertisements
प्रश्न
यदि 1 + sin2θ = 3sinθ cosθ है, तो सिद्ध कीजिए कि tanθ = 1 या `1/2` है।
उत्तर
दिया गया है: 1 + sin2 θ = 3 sin θ cos θ
L.H.S और R.H.S समीकरणों को sin2θ से विभाजित करने पर,
हम पाते हैं,
`(1 + sin^2 theta)/(sin^2 theta) = (3 sin theta cos theta)/(sin^2 theta)`
⇒ `1/(sin^2 theta) + 1 = (3 cos theta)/(sin theta)`
cosec2 θ + 1 = 3 cot θ
चूँकि, cosec2 θ – cot2 θ = 1
⇒ cosec2 θ = cot2 θ + 1
⇒ cot2 θ + 1 + 1 = 3 cot θ
⇒ cot2 θ + 2 = 3 cot θ
⇒ cot2 θ – 3 cot θ + 2 = 0
मध्य पद को विभाजित करना और फिर समीकरण को हल करना,
⇒ cot2 θ – cot θ – 2 cot θ + 2 = 0
⇒ cot θ(cot θ – 1) – 2(cot θ + 1) = 0
⇒ (cot θ – 1)(cot θ – 2) = 0
⇒ cot θ = 1, 2
चूँकि,
tan θ = `1/(cot theta)`
tan θ = 1, `1/2`
अत: सिद्ध हुआ।
APPEARS IN
संबंधित प्रश्न
मान निकालिए
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
(secA + tanA) (1 − sinA) बराबर है:
निम्नलिखित सर्वसमिकाएँ सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`
2sinθ का मान `a + 1/a` हो सकता है, जहाँ a एक धनात्मक संख्या है और a ≠ 1 है।
निम्नलिखित को सिद्ध कीजिए:
(sin α + cos α) (tan α + cot α) = sec α + cosec α
दर्शाइए कि `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1 है।
दर्शाइए की tan4θ + tan2θ = sec4θ – sec2θ है।