Advertisements
Advertisements
प्रश्न
निम्नलिखित सर्वसमिकाएँ सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
उत्तर
L.H.S
= `(cosec θ – cot θ)^2`
= `(1/sintheta - costheta/sintheta)^2`
= `(1-costheta)^2/(sin^2 theta)`
= `(1-cos theta)^2/(1-cos^2theta)`
= `((1-costheta)(1-costheta))/((1-costheta)(1+cos theta)) `
= `(1-cos theta)/(1+costheta)`
= R.H.S
APPEARS IN
संबंधित प्रश्न
(secA + tanA) (1 − sinA) बराबर है:
व्यंजक [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] का मान ______ है।
यदि cos (α + β) = 0 हो, तो sin (α – β) को निम्नलिखित के रूप में बदला जा सकता ______ है।
निम्नलिखित को सिद्ध कीजिए:
(sin α + cos α) (tan α + cot α) = sec α + cosec α
दर्शाइए की tan4θ + tan2θ = sec4θ – sec2θ है।
यदि cosec θ + cot θ = p है, तो सिद्ध कीजिए कि cos θ = `(p^2 - 1)/(p^2 + 1)` है।
सिद्ध कीजिए कि `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta` है।
यदि sinθ + 2cosθ = 1 दिया है, तो सिद्ध कीजिए कि 2sinθ – cosθ = 2 है।
यदि tan θ + sec θ = l है, तो सिद्ध कीजिए कि sec θ = `(l^2 + 1)/(2l)` है।
यदि a sinθ + b cosθ = c है, तो सिद्ध कीजिए कि a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)` है।