हिंदी

यदि sinθ + 2cosθ = 1 दिया है, तो सिद्ध कीजिए कि 2sinθ – cosθ = 2 है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि sinθ + 2cosθ = 1 दिया है, तो सिद्ध कीजिए कि 2sinθ – cosθ = 2 है।

योग

उत्तर

दिया गया है: sin θ + 2 cos θ = 1

दोनों तरफ से चौका,

(sin θ + 2 cos θ)2 = 1

⇒ sin2 θ + 4 cos2 θ + 4sin θ cos θ = 1

चूँकि, sin2 θ = 1 – cos2 θ and cos2 θ = 1 – sin2 θ

⇒ (1 – cos2 θ) + 4(1 – sin2 θ) + 4sin θ cos θ = 1

⇒ 1 – cos2 θ + 4 – 4 sin2 θ + 4sin θ cos θ = 1

⇒ – 4 sin2 θ – cos2 θ + 4sin θ cos θ = – 4

⇒ 4 sin2 θ + cos2 θ – 4sin θ cos θ = 4

हम जानते हैं कि,

a2 + b2 – 2ab = (a – b)2

तो, हमें मिलता है,

(2sin θ – cos θ)2 = 4

⇒ 2sin θ – cos θ = 2

अत: सिद्ध हुआ।

shaalaa.com
त्रिकोणमितीय सर्वसमिकाएँ
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: त्रिकोणमिति का परिचय और उसके अनुप्रयोग - प्रश्नावली 8.4 [पृष्ठ १०१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
अध्याय 8 त्रिकोणमिति का परिचय और उसके अनुप्रयोग
प्रश्नावली 8.4 | Q 5. | पृष्ठ १०१

संबंधित प्रश्न

(secA + tanA) (1 − sinA) बराबर है:


निम्नलिखित सर्वसमिकाएँ सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है:

`(cosec  θ  – cot θ)^2 = (1-cos theta)/(1 + cos theta)`


निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:

`sqrt((1+sinA)/(1-sinA)) = secA + tanA`


व्यंजक [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] का मान ______ है।


यदि cos (α + β) = 0 हो, तो sin (α – β) को निम्नलिखित के रूप में बदला जा सकता ______ है। 


यदि sinA + sin2A = 1 है, तो व्यंजक (cos2A + cos4A) का मान ______ है।


निम्नलिखित को सिद्ध कीजिए:

`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A


यदि 1 + sin2θ = 3sinθ cosθ है, तो सिद्ध कीजिए कि tanθ = 1 या `1/2` है।


यदि a sinθ + b cosθ = c है, तो सिद्ध कीजिए कि  a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)` है।


सिद्ध कीजिए कि `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/(cos theta)` है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×