Advertisements
Advertisements
प्रश्न
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
उत्तर
L.H.S
= `sqrt((1+sinA)/(1-sinA))`
= `sqrt(((1+sinA)(1+sinA))/((1-sinA)(1+sinA))`
= `(1+sinA)/(sqrt(1-sin^2A))`
= `(1+sinA)/sqrt(cos^2A)`
= `(1+sinA)/cosA`
= secA + tan A
= `1/cos A + sin A/cos A`
= R.H.S
APPEARS IN
संबंधित प्रश्न
`(1+tan^2A)/(1+cot^2A)` बराबर है:
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
सर्वसमिका cosec2 A = 1 + cot2 A को लागू करके
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
(cosec A – sin A) (sec A – cos A) = `1/(tanA+cotA)`
[संकेत: वाम पक्ष और दायाँ पक्ष को अलग - अलग सरल कीजिए।]
यदि sinθ – cosθ = 0 है, तो (sin4θ + cos4θ) का मान ______ है।
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ है।
2sinθ का मान `a + 1/a` हो सकता है, जहाँ a एक धनात्मक संख्या है और a ≠ 1 है।
cos θ = `(a^2 + b^2)/(2ab)` है, जहाँ a और b ऐसी दो भिन्न संख्याएँ हैं कि ab > 0 है।
(1 + tan2θ)(1 – sinθ)(1 + sinθ) को सरल कीजिए।
दर्शाइए कि `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1 है।
सिद्ध कीजिए कि `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta` है।