Advertisements
Advertisements
प्रश्न
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ है।
विकल्प
सत्य
असत्य
उत्तर
यह कथन असत्य है।
स्पष्टीकरण:
L.H.S = (tan θ + 2)(2 tan θ + 1)
= 2 tan2 θ + tan θ + 4 tan θ + 2
= 2 tan2θ + 5 tan θ + 2
चूँकि, sec2θ – tan2θ = 1, हम पाते हैं, tan2θ = sec2θ – 1
= 2(sec2θ – 1) + 5 tan θ + 2
= 2 sec2θ – 2 + 5 tan θ + 2
= 5 tan θ + 2 sec2 θ ≠ R.H.S
∴ L.H.S ≠ R.H.S
APPEARS IN
संबंधित प्रश्न
(secA + tanA) (1 − sinA) बराबर है:
`(1+tan^2A)/(1+cot^2A)` बराबर है:
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
(cosec A – sin A) (sec A – cos A) = `1/(tanA+cotA)`
[संकेत: वाम पक्ष और दायाँ पक्ष को अलग - अलग सरल कीजिए।]
व्यंजक [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] का मान ______ है।
sin(45° + θ) – cos(45° – θ) बराबर ______ है।
निम्नलिखित को सिद्ध कीजिए:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
यदि `sqrt(3)` tan θ = 1 है, तो sin2θ – cos2θ का मान ज्ञात कीजिए।
यदि 2sin2θ – cos2θ = 2 है, तो θ का मान ज्ञात कीजिए।