Advertisements
Advertisements
प्रश्न
यदि `sqrt(3)` tan θ = 1 है, तो sin2θ – cos2θ का मान ज्ञात कीजिए।
उत्तर
मान लें कि,
`sqrt(3) tan θ` = 1
⇒ tan θ = `1/sqrt(3)` = tan 30°
⇒ θ = 30°
अब, sin2θ – cos2θ = sin230° – cos230°
= `(1/2)^2 - (sqrt(3)/2)^2`
= `1/4 - 3/4`
= `(1 - 3)/4`
= `-2/4`
= `-1/2`
APPEARS IN
संबंधित प्रश्न
`(1+tan^2A)/(1+cot^2A)` बराबर है:
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[संकेत: वाम पक्ष और दायाँ पक्ष को अलग - अलग सरल कीजिए।]
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
सर्वसमिका cosec2 A = 1 + cot2 A को लागू करके
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA`
यदि cos 9α = sinα है और 9α < 90° है, तो tan 5α का मान ______ है।
(1 + tan2θ)(1 – sinθ)(1 + sinθ) को सरल कीजिए।
दर्शाइए की tan4θ + tan2θ = sec4θ – sec2θ है।
सिद्ध कीजिए कि `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta` है।
यदि 1 + sin2θ = 3sinθ cosθ है, तो सिद्ध कीजिए कि tanθ = 1 या `1/2` है।
यदि a sinθ + b cosθ = c है, तो सिद्ध कीजिए कि a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)` है।
सिद्ध कीजिए कि `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/(cos theta)` है।