Advertisements
Advertisements
प्रश्न
यदि `sqrt(3)` tan θ = 1 है, तो sin2θ – cos2θ का मान ज्ञात कीजिए।
उत्तर
मान लें कि,
`sqrt(3) tan θ` = 1
⇒ tan θ = `1/sqrt(3)` = tan 30°
⇒ θ = 30°
अब, sin2θ – cos2θ = sin230° – cos230°
= `(1/2)^2 - (sqrt(3)/2)^2`
= `1/4 - 3/4`
= `(1 - 3)/4`
= `-2/4`
= `-1/2`
APPEARS IN
संबंधित प्रश्न
मान निकालिए
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) बराबर है:
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
यदि cos 9α = sinα है और 9α < 90° है, तो tan 5α का मान ______ है।
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ है।
cos θ = `(a^2 + b^2)/(2ab)` है, जहाँ a और b ऐसी दो भिन्न संख्याएँ हैं कि ab > 0 है।
(1 + tan2θ)(1 – sinθ)(1 + sinθ) को सरल कीजिए।
यदि cosec θ + cot θ = p है, तो सिद्ध कीजिए कि cos θ = `(p^2 - 1)/(p^2 + 1)` है।