Advertisements
Advertisements
प्रश्न
व्यंजक [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] का मान ______ है।
विकल्प
– 1
0
1
`3/2`
उत्तर
व्यंजक [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] का मान 0 है।
स्पष्टीकरण:
प्रश्न के अनुसार,
हमें समीकरण का मान ज्ञात करना है,
cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)
= cosec[90° – (15° – θ)] – sec(15° – θ) – tan(55° + θ) + cot[90° – (55° + θ)]
चूँकि, cosec(90° – θ) = sec θ
और cot(90° – θ) = tan θ
हम पाते हैं,
= sec(15° – θ) – sec(15° – θ) – tan(55° + θ) + tan(55° + θ)
= 0
APPEARS IN
संबंधित प्रश्न
निम्नलिखित सर्वसमिकाएँ सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`(tantheta)/(1-cottheta) + (cottheta)/(1-tantheta) = 1+secthetacosec theta`
[संकेत: व्यंजक को sin θ और cosθ के पदों में लिखिए]
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`
यदि sinA + sin2A = 1 है, तो व्यंजक (cos2A + cos4A) का मान ______ है।
sin(45° + θ) – cos(45° – θ) बराबर ______ है।
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ है।
2sinθ का मान `a + 1/a` हो सकता है, जहाँ a एक धनात्मक संख्या है और a ≠ 1 है।
दर्शाइए की tan4θ + tan2θ = sec4θ – sec2θ है।
यदि a sinθ + b cosθ = c है, तो सिद्ध कीजिए कि a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)` है।