English

यदि sin θ + cos θ = p और sec θ + cosec θ = q है, तो सिद्ध कीजिए कि q(p2 – 1) = 2p है। - Mathematics (गणित)

Advertisements
Advertisements

Question

यदि sin θ + cos θ = p और sec θ + cosec θ = q है, तो सिद्ध कीजिए कि q(p2 – 1) = 2p है।

Sum

Solution

मान लें कि,

sin θ + cos θ = p       ...(i)

और sec θ + cosec θ = q

`\implies 1/cos θ + 1/sin θ` = q       ...`[∵ sec θ = 1/cos θ and "cosec"  θ = 1/sinθ]`

`\implies (sin θ + cos θ)/(sin θ . cos θ)` = q

`\implies "p"/(sin θ . cos θ)` = q           ...[समीकरण से (i)]

`\implies` sin θ. cos θ = `"p"/"q"`         ...(ii)

sin θ + cos θ = p

दोनों पक्षों का वर्ग करने पर, हमें प्राप्त होता है।

(sin θ + cos θ)2 = p2

`\implies` (sin2 θ + cos2 θ) + 2 sin θ . cos θ = p2      ...[∵ (a + b)2 = a2 + 2ab + b2]

`\implies` 1 + 2sin θ . cos θ = p2      ...[∵ sin2 θ + cos2 θ = 1]

`\implies` `1 + 2 . "p"/"q"` = p2         ...[समीकरण से (iii)]

`\implies` q + 2p = p2q

`\implies` 2p = p2q – q

`\implies` q(p2 – 1) = 2p

अत: सिद्ध हुआ।

shaalaa.com
त्रिकोणमितीय सर्वसमिकाएँ
  Is there an error in this question or solution?
Chapter 8: त्रिकोणमिति का परिचय और उसके अनुप्रयोग - प्रश्नावली 8.4 [Page 101]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 8 त्रिकोणमिति का परिचय और उसके अनुप्रयोग
प्रश्नावली 8.4 | Q 10. | Page 101
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×