Advertisements
Advertisements
Question
यदि sin θ + cos θ = p और sec θ + cosec θ = q है, तो सिद्ध कीजिए कि q(p2 – 1) = 2p है।
Solution
मान लें कि,
sin θ + cos θ = p ...(i)
और sec θ + cosec θ = q
`\implies 1/cos θ + 1/sin θ` = q ...`[∵ sec θ = 1/cos θ and "cosec" θ = 1/sinθ]`
`\implies (sin θ + cos θ)/(sin θ . cos θ)` = q
`\implies "p"/(sin θ . cos θ)` = q ...[समीकरण से (i)]
`\implies` sin θ. cos θ = `"p"/"q"` ...(ii)
sin θ + cos θ = p
दोनों पक्षों का वर्ग करने पर, हमें प्राप्त होता है।
(sin θ + cos θ)2 = p2
`\implies` (sin2 θ + cos2 θ) + 2 sin θ . cos θ = p2 ...[∵ (a + b)2 = a2 + 2ab + b2]
`\implies` 1 + 2sin θ . cos θ = p2 ...[∵ sin2 θ + cos2 θ = 1]
`\implies` `1 + 2 . "p"/"q"` = p2 ...[समीकरण से (iii)]
`\implies` q + 2p = p2q
`\implies` 2p = p2q – q
`\implies` q(p2 – 1) = 2p
अत: सिद्ध हुआ।
APPEARS IN
RELATED QUESTIONS
मान निकालिए
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
(secA + tanA) (1 − sinA) बराबर है:
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
यदि cos 9α = sinα है और 9α < 90° है, तो tan 5α का मान ______ है।
यदि sinA + sin2A = 1 है, तो व्यंजक (cos2A + cos4A) का मान ______ है।
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
यदि cosA + cos2A = 1 है, तो sin2A + sin4A = 1 है।
2sinθ का मान `a + 1/a` हो सकता है, जहाँ a एक धनात्मक संख्या है और a ≠ 1 है।
cos θ = `(a^2 + b^2)/(2ab)` है, जहाँ a और b ऐसी दो भिन्न संख्याएँ हैं कि ab > 0 है।
यदि a sinθ + b cosθ = c है, तो सिद्ध कीजिए कि a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)` है।