Advertisements
Advertisements
Question
cos θ = `(a^2 + b^2)/(2ab)` है, जहाँ a और b ऐसी दो भिन्न संख्याएँ हैं कि ab > 0 है।
Options
सत्य
असत्य
Solution
यह विधान असत्य है।
स्पष्टीकरण:
दिया गया है: a ≠ b और ab > 0
(क्योंकि गैर-ऋणात्मक वास्तविक संख्याओं की सूची का अंकगणितीय माध्य (AM) उसी सूची के ज्यामितीय माध्य (GM) से अधिक या उसके बराबर है)
⇒ AM > GM
यदि a और b ऐसी संख्याएँ हों, तब
AM = `(a + b)/2` और Gm = `sqrt(ab)`
यह मानकर कि cos θ = `(a^2 + b^2)/(2ab)` सत्य कथन है।
इसी प्रकार, a2 और b2 का AM और GM होगा,
AM = `(a^2 + b^2)/2` और GM = `sqrt(a^2 * b^2)`
तो, `(a^2 + b^2)/2 > sqrt(a^2 * b^2)` ...(AM और GM संपत्ति द्वारा जैसा कि उत्तर में पहले बताया गया है)
⇒ `(a^2 + b^2)/2 > ab`
⇒ `(a^2 + b^2)/(2ab) > 1`
⇒ cos θ > 1 ...(हमारी धारणा से)
लेकिन यह संभव नहीं है, –1 ≤ cos θ ≤ 1
इस प्रकार, हमारी धारणा गलत है और `cos theta ≠ (a^2 + b^2)/(2ab)`
APPEARS IN
RELATED QUESTIONS
9 sec2 A − 9 tan2 A बराबर है:
निम्नलिखित सर्वसमिकाएँ सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
व्यंजक [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] का मान ______ है।
यदि sinθ – cosθ = 0 है, तो (sin4θ + cos4θ) का मान ______ है।
यदि 2sin2θ – cos2θ = 2 है, तो θ का मान ज्ञात कीजिए।
दर्शाइए कि `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1 है।
दर्शाइए की tan4θ + tan2θ = sec4θ – sec2θ है।
यदि cosec θ + cot θ = p है, तो सिद्ध कीजिए कि cos θ = `(p^2 - 1)/(p^2 + 1)` है।
यदि 1 + sin2θ = 3sinθ cosθ है, तो सिद्ध कीजिए कि tanθ = 1 या `1/2` है।
सिद्ध कीजिए कि `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/(cos theta)` है।