Advertisements
Advertisements
Question
(1 + tan2θ)(1 – sinθ)(1 + sinθ) को सरल कीजिए।
Solution
(1 + tan2θ)(1 – sinθ)(1 + sinθ)
= (1 + tan2θ)(1 – sin2θ) ...[∵ (a – b)(a + b) = a2 – b2]
= sec2θ . cos2θ ...[∵ 1 + tan2θ = sec2θ and cos2θ + sin2θ = 1]
= `1/(cos^2 theta) * cos^2 theta` ...`[∵ sec theta = 1/(costheta)]`
= 1
APPEARS IN
RELATED QUESTIONS
9 sec2 A − 9 tan2 A बराबर है:
`(1+tan^2A)/(1+cot^2A)` बराबर है:
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
सर्वसमिका cosec2 A = 1 + cot2 A को लागू करके
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`
यदि sin θ = `a/b` दिया है, तो cos θ से बराबर ______ है।
यदि cos 9α = sinα है और 9α < 90° है, तो tan 5α का मान ______ है।
यदि sinθ – cosθ = 0 है, तो (sin4θ + cos4θ) का मान ______ है।
यदि `sqrt(3)` tan θ = 1 है, तो sin2θ – cos2θ का मान ज्ञात कीजिए।
यदि a sinθ + b cosθ = c है, तो सिद्ध कीजिए कि a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)` है।