Advertisements
Advertisements
Question
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`
Solution
`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`
`(1+tan^2A)/(1+cot^2A)=(1+sin^2A/cos^2A)/(1+cos^2A/sin^2A)`
= `((cos^2A + sin^2A)/cos^2A)/((sin^2A + cos^2A)/sin^2A)`
= `(1/cos^2A)/(1/sin^2A)`
= `sin^2A/cos^2A`
= tan2A
`((1-tanA)/(1-cotA))^2=(1+tan^2A-2tanA)/(1+cot^2A-2cotA)`
= `(sec^2A-2tanA)/(cosec^2A-2cotA)`
= `(1/cos^2A-(2sinA)/cosA)/(1/sin^2A-(2cosA)/sinA)`
= `((1 - 2sinAcosA)/cos^2A)/((1 - 2sinAcosA)/sin^2A)`
= `sin^2A/cos^2A`
= tan2A
APPEARS IN
RELATED QUESTIONS
`(1+tan^2A)/(1+cot^2A)` बराबर है:
निम्नलिखित सर्वसमिकाएँ सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[संकेत: वाम पक्ष और दायाँ पक्ष को अलग - अलग सरल कीजिए।]
व्यंजक [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] का मान ______ है।
यदि sinA + sin2A = 1 है, तो व्यंजक (cos2A + cos4A) का मान ______ है।
यदि cosA + cos2A = 1 है, तो sin2A + sin4A = 1 है।
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ है।
2sinθ का मान `a + 1/a` हो सकता है, जहाँ a एक धनात्मक संख्या है और a ≠ 1 है।
सिद्ध कीजिए कि `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/(cos theta)` है।