Advertisements
Advertisements
Question
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
(cosec A – sin A) (sec A – cos A) = `1/(tanA+cotA)`
[संकेत: वाम पक्ष और दायाँ पक्ष को अलग - अलग सरल कीजिए।]
Solution
(cosec A – sin A) (sec A – cos A) = `1/(tanA+cotA)`
L.H.S. = (cosec A – sin A) (sec A – cos A)
= `(1/sinA-sinA)(1/cosA-cosA)`
= `((1-sin^2A)/sinA)((1-cos^2A)/cosA)`
= `((cos^2A)(sin^2A))/(sinAcosA)`
= sinA cosA
R.H.S = `1/(tanA+cotA)`
= `1/(sinA/cosA+cosA/sinA)`
= `1/((sin^2A + cos^2A)/(sinAcosA))`
= `(sinAcosA)/(sin^2A+cos^2A)`
= sinA cosA
Hence, L.H.S = R.H.S
APPEARS IN
RELATED QUESTIONS
9 sec2 A − 9 tan2 A बराबर है:
(secA + tanA) (1 − sinA) बराबर है:
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
यदि cos (α + β) = 0 हो, तो sin (α – β) को निम्नलिखित के रूप में बदला जा सकता ______ है।
यदि sinA + sin2A = 1 है, तो व्यंजक (cos2A + cos4A) का मान ______ है।
sin(45° + θ) – cos(45° – θ) बराबर ______ है।
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
निम्नलिखित को सिद्ध कीजिए:
(sin α + cos α) (tan α + cot α) = sec α + cosec α
यदि tan θ + sec θ = l है, तो सिद्ध कीजिए कि sec θ = `(l^2 + 1)/(2l)` है।
यदि sin θ + cos θ = p और sec θ + cosec θ = q है, तो सिद्ध कीजिए कि q(p2 – 1) = 2p है।