Advertisements
Advertisements
प्रश्न
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
(cosec A – sin A) (sec A – cos A) = `1/(tanA+cotA)`
[संकेत: वाम पक्ष और दायाँ पक्ष को अलग - अलग सरल कीजिए।]
उत्तर
(cosec A – sin A) (sec A – cos A) = `1/(tanA+cotA)`
L.H.S. = (cosec A – sin A) (sec A – cos A)
= `(1/sinA-sinA)(1/cosA-cosA)`
= `((1-sin^2A)/sinA)((1-cos^2A)/cosA)`
= `((cos^2A)(sin^2A))/(sinAcosA)`
= sinA cosA
R.H.S = `1/(tanA+cotA)`
= `1/(sinA/cosA+cosA/sinA)`
= `1/((sin^2A + cos^2A)/(sinAcosA))`
= `(sinAcosA)/(sin^2A+cos^2A)`
= sinA cosA
Hence, L.H.S = R.H.S
APPEARS IN
संबंधित प्रश्न
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`(tantheta)/(1-cottheta) + (cottheta)/(1-tantheta) = 1+secthetacosec theta`
[संकेत: व्यंजक को sin θ और cosθ के पदों में लिखिए]
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
सर्वसमिका cosec2 A = 1 + cot2 A को लागू करके
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA`
यदि sinA + sin2A = 1 है, तो व्यंजक (cos2A + cos4A) का मान ______ है।
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ है।
cos θ = `(a^2 + b^2)/(2ab)` है, जहाँ a और b ऐसी दो भिन्न संख्याएँ हैं कि ab > 0 है।
यदि `sqrt(3)` tan θ = 1 है, तो sin2θ – cos2θ का मान ज्ञात कीजिए।
(1 + tan2θ)(1 – sinθ)(1 + sinθ) को सरल कीजिए।
दर्शाइए कि `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1 है।
यदि cosec θ + cot θ = p है, तो सिद्ध कीजिए कि cos θ = `(p^2 - 1)/(p^2 + 1)` है।
यदि a sinθ + b cosθ = c है, तो सिद्ध कीजिए कि a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)` है।