Advertisements
Advertisements
Question
`(1+tan^2A)/(1+cot^2A)` बराबर है:
Options
sec2 A
−1
cot2 A
tan2 A
Solution
tan2 A
स्पष्टीकरण:
`(1+tan^2A)/(1+cot^2A) = (1+(sin^2A)/cos^2A)/(1+(cos^2A)/(sin^2A))`
= `((cos^2A + sin^2A)/cos^2A)/((sin^2A + cos^2A)/sin^2A)`
= `(1/cos^2A)/(1/sin^2A)`
= `(sin^2A)/cos^2A`
= `tan^2A`
इसलिए वैकल्पिक tan2 A सही है
APPEARS IN
RELATED QUESTIONS
(secA + tanA) (1 − sinA) बराबर है:
व्यंजक [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] का मान ______ है।
यदि cos 9α = sinα है और 9α < 90° है, तो tan 5α का मान ______ है।
यदि sinA + sin2A = 1 है, तो व्यंजक (cos2A + cos4A) का मान ______ है।
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
cos θ = `(a^2 + b^2)/(2ab)` है, जहाँ a और b ऐसी दो भिन्न संख्याएँ हैं कि ab > 0 है।
यदि 2sin2θ – cos2θ = 2 है, तो θ का मान ज्ञात कीजिए।
यदि cosec θ + cot θ = p है, तो सिद्ध कीजिए कि cos θ = `(p^2 - 1)/(p^2 + 1)` है।
यदि sinθ + 2cosθ = 1 दिया है, तो सिद्ध कीजिए कि 2sinθ – cosθ = 2 है।
यदि a sinθ + b cosθ = c है, तो सिद्ध कीजिए कि a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)` है।