Advertisements
Advertisements
प्रश्न
9 sec2 A − 9 tan2 A बराबर है:
विकल्प
1
9
8
0
उत्तर
9
स्पष्टीकरण:
9 sec2A − 9 tan2A
= 9 (sec2A − tan2A)
= 9 (1) ...[चूँकि sec2 A − tan2 A = 1]
= 9
अत: विकल्प 9 सही है।
APPEARS IN
संबंधित प्रश्न
मान निकालिए
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
मान निकालिए sin25° cos65° + cos25° sin65°
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[संकेत: वाम पक्ष और दायाँ पक्ष को अलग - अलग सरल कीजिए।]
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
यदि sinA + sin2A = 1 है, तो व्यंजक (cos2A + cos4A) का मान ______ है।
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ है।
निम्नलिखित को सिद्ध कीजिए:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
(1 + tan2θ)(1 – sinθ)(1 + sinθ) को सरल कीजिए।
यदि 2sin2θ – cos2θ = 2 है, तो θ का मान ज्ञात कीजिए।
सिद्ध कीजिए कि `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta` है।