Advertisements
Advertisements
प्रश्न
निम्नलिखित को सिद्ध कीजिए:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
उत्तर
L.H.S = `1 + (cot^2 alpha)/(1 + "cosec" alpha)`
= `1 + ((cos^2 alpha)/(sin^2 alpha))/((1 + 1)/(sin alpha))` ...`[∵ cot theta = (cos theta)/(sin theta) "and" "cosec" theta = 1/sin theta]`
= `1 + (cos^2 alpha)/(sinalpha (1 + sin alpha))`
= `(sin alpha(1 + sin alpha) + cos^2 alpha)/(sin alpha(1 + sin alpha))`
= `(sin alpha + (sin^2 alpha + cos^2 alpha))/(sin alpha(1 + sin alpha)` ...[∵ sin2θ + cos2θ = 1]
= `((sin alpha + 1))/(sin alpha(sin alpha + 1))`
= `1/sinalpha` ...`[∵ "cosec" theta = 1/sin theta]`
= cosec α
= R.H.S
APPEARS IN
संबंधित प्रश्न
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) बराबर है:
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
sin(45° + θ) – cos(45° – θ) बराबर ______ है।
cos θ = `(a^2 + b^2)/(2ab)` है, जहाँ a और b ऐसी दो भिन्न संख्याएँ हैं कि ab > 0 है।
निम्नलिखित को सिद्ध कीजिए:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
यदि `sqrt(3)` tan θ = 1 है, तो sin2θ – cos2θ का मान ज्ञात कीजिए।
दर्शाइए कि `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1 है।
सिद्ध कीजिए कि `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta` है।
यदि 1 + sin2θ = 3sinθ cosθ है, तो सिद्ध कीजिए कि tanθ = 1 या `1/2` है।
यदि sinθ + 2cosθ = 1 दिया है, तो सिद्ध कीजिए कि 2sinθ – cosθ = 2 है।