Advertisements
Advertisements
Question
निम्नलिखित को सिद्ध कीजिए:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
Solution
L.H.S = `1 + (cot^2 alpha)/(1 + "cosec" alpha)`
= `1 + ((cos^2 alpha)/(sin^2 alpha))/((1 + 1)/(sin alpha))` ...`[∵ cot theta = (cos theta)/(sin theta) "and" "cosec" theta = 1/sin theta]`
= `1 + (cos^2 alpha)/(sinalpha (1 + sin alpha))`
= `(sin alpha(1 + sin alpha) + cos^2 alpha)/(sin alpha(1 + sin alpha))`
= `(sin alpha + (sin^2 alpha + cos^2 alpha))/(sin alpha(1 + sin alpha)` ...[∵ sin2θ + cos2θ = 1]
= `((sin alpha + 1))/(sin alpha(sin alpha + 1))`
= `1/sinalpha` ...`[∵ "cosec" theta = 1/sin theta]`
= cosec α
= R.H.S
APPEARS IN
RELATED QUESTIONS
9 sec2 A − 9 tan2 A बराबर है:
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
व्यंजक [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] का मान ______ है।
यदि cos (α + β) = 0 हो, तो sin (α – β) को निम्नलिखित के रूप में बदला जा सकता ______ है।
यदि cos 9α = sinα है और 9α < 90° है, तो tan 5α का मान ______ है।
2sinθ का मान `a + 1/a` हो सकता है, जहाँ a एक धनात्मक संख्या है और a ≠ 1 है।
निम्नलिखित को सिद्ध कीजिए:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ
(1 + tan2θ)(1 – sinθ)(1 + sinθ) को सरल कीजिए।
दर्शाइए की tan4θ + tan2θ = sec4θ – sec2θ है।
यदि cosec θ + cot θ = p है, तो सिद्ध कीजिए कि cos θ = `(p^2 - 1)/(p^2 + 1)` है।