Advertisements
Advertisements
Question
निम्नलिखित को सिद्ध कीजिए:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ
Solution
L.H.S = `sintheta/(1 + cos theta) + (1 + cos theta)/sintheta`
हरों का L.C.M लेते हुए,
हम पाते हैं,
= `(sin^2theta + (1 + cos theta)^2)/((1 + cos theta)* sintheta)`
= `(sin^2theta + 1 + cos^2theta + 2costheta)/((1 + costheta) * sin theta)`
चूँकि, sin2θ + cos2θ = 1
= `(1 + 1 + 2costheta)/((1 + costheta) * sin theta)`
= `(2 + 2 cos theta)/((1 + cos theta) * sin theta)`
= `(2(1 + cos theta))/((1 + cos theta) * sin theta)`
चूँकि, `1/sin theta` = cosec θ
= `2/sin theta`
= 2 cosec θ
R.H.S
अत: सिद्ध हुआ।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
(cosec A – sin A) (sec A – cos A) = `1/(tanA+cotA)`
[संकेत: वाम पक्ष और दायाँ पक्ष को अलग - अलग सरल कीजिए।]
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`
sin(45° + θ) – cos(45° – θ) बराबर ______ है।
cos θ = `(a^2 + b^2)/(2ab)` है, जहाँ a और b ऐसी दो भिन्न संख्याएँ हैं कि ab > 0 है।
यदि `sqrt(3)` tan θ = 1 है, तो sin2θ – cos2θ का मान ज्ञात कीजिए।
दर्शाइए कि `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1 है।
दर्शाइए की tan4θ + tan2θ = sec4θ – sec2θ है।
यदि cosec θ + cot θ = p है, तो सिद्ध कीजिए कि cos θ = `(p^2 - 1)/(p^2 + 1)` है।
सिद्ध कीजिए कि `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta` है।