Advertisements
Advertisements
Question
6 m ऊँचे एक खंभे की छाया भूमि पर `2sqrt3` m लंबी है। तब, उस समय सूर्य का उन्नयन कोण ______ है।
Options
60°
45°
30°
90°
Solution
6 m ऊँचे एक खंभे की छाया भूमि पर `2sqrt(3)` m लंबी है। तब उस समय सूर्य का उन्नयन कोण 60° है।
स्पष्टीकरण:
माना BC = 6 m खंभे की ऊंचाई है और AB = `2sqrt(3)` m जमीन पर छाया की लंबाई है।
माना सूर्य जमीन पर θ कोण बनाता है।
अब, ΔABC में,
tan θ = `"BC"/"AB"`
⇒ tan θ = `6/(2sqrt(3))`
= `3/sqrt(3) * sqrt(3)/sqrt(3)`
⇒ tan θ = `(3sqrt(3))/3`
= `sqrt(3)` ...`[∵ tan 60^circ = sqrt(3)]`
= tan 60°
∴ θ = 60°
अतः, सूर्य का उन्नयन कोण 60° है।
APPEARS IN
RELATED QUESTIONS
सर्कस का एक कलाकार एक 20m लंबी डोर पर चढ़ रहा है जो अच्छी तरह से तनी हुई है और भूमि पर सीधे लगे खंभे के शिखर से बंधा हुआ है। यदि भूमि स्तर के साथ डोर द्वारा बनाया गया कोण 30° का हो तो खंभे की ऊँचाई ज्ञात कीजिए।
भूमि से 60 m की ऊँचाई पर एक पतंग उड़ रही है। पतंग में लगी डोरी को अस्थायी रूप से भूमि के एक बिंदु से बांध से दिया गया है। भूमि के साथ डोरी का झुकाव 60° है। यह मानकर की डोरी में कोई ढील नहीं है, डोरी की लंबाई ज्ञात कीजिए।
एक पेडस्टल के शिखर पर एक 1.6 मीटर ऊँची मूर्ति लगी है। भूमि के एक बिंदु से मूर्ति के शिखर का उन्नयन कोण 60° है और उसी बिंदु से पेडस्टल के शिखर का उन्नयन कोण 45° है। पेडस्टल की ऊँचाई ज्ञात कीजिए।
एक मीनार के पाद-बिंदु से एक भवन के शिखर का उन्नयन कोण 30° है और भवन के पाद - बिंदु से मीनार के शिखर का उन्नयन कोण 60° है। यदि मीनार 50 m ऊँची हो, तो भवन को ऊंचाई ज्ञात कीजिए।
एक नहर के एक तट पर एक टीवी टॉवर ऊध्वार्रधरत: खड़ा है। टॉवर के ठीक सामने दूसरे तट के एक अन्य बिंदु से टॉवर के शिखर का उन्नयन कोण 60° है। इसी तट पर इस बिंदु से 20 m दूर और इस बिंदु को मीनार के पाद से मिलाने वाली रेखा पर स्थित एक अन्य बिंदु से टॉवर के शिखर का अन्नयन कोण 30° है। (आकृति देखिए) टॉवर की ऊँचाई और नहर की चौड़ाई ज्ञात कीजिए।
7 m ऊँचे भवन के शिखर से एक केबल टॉवर के शिखर का उन्नयन कोण 60° है और इसके पाद का अवनमन कोण 45° है। टॉवर की ऊँचाई ज्ञात कीजिए।
1.5 मीटर ऊँचाई वाला एक प्रेक्षक 22 मीटर ऊँची एक मीनार से 20.5 मीटर की दूरी पर खड़ा है। प्रेक्षक की आँख से मीनार की चोटी का उन्नयन कोण निर्धारित कीजिए।
किसी बिंदु से एक मीनार की चोटी का उन्नयन कोण 30° है। यदि प्रेक्षक दीवार की ओर 20 मीटर चलता है, तो उन्नयन कोण में 15° की वृद्धि हो जाती है। मीनार की ऊँचाई ज्ञात कीजिए।
h ऊँचाई की किसी मीनार की चोटी से दो वस्तुओं, जो मीनार के आधार वाली रेखा में स्थित हैं, के अवनमन कोण α और β (β > α) हैं। दोनों वस्तुओं के बीच की दूरी ज्ञात कीजिए।
किसी मकान की खिड़की भूमि से h m की ऊँचाई पर है। इस खिड़की से, सड़क के दूसरी ओर स्थित एक अन्य मकान के शिखर और आधार के क्रमशः उन्नयन और अवनमन कोण α और β पाए जाते हैं। सिद्ध कीजिए कि दूसरे मकान की ऊँचाई h(1 + tan α cot β) मीटर है।