मराठी

यदि एक झील की सतह से 3 मीटर ऊपर एक प्लेटफार्म पर खड़ा एक व्यक्ति किसी बादल और झील में उसके परावर्तन को देखता है, तो उस बादल का उन्नयन कोण उसके परावर्तन के अवनमन कोण के बराबर होता है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि एक झील की सतह से 3 मीटर ऊपर एक प्लेटफार्म पर खड़ा एक व्यक्ति किसी बादल और झील में उसके परावर्तन को देखता है, तो उस बादल का उन्नयन कोण उसके परावर्तन के अवनमन कोण के बराबर होता है।

पर्याय

  • सत्य

  • असत्य

MCQ
चूक किंवा बरोबर

उत्तर

यह कथन असत्य है।

स्पष्टीकरण:

आकृति से, हम देखते हैं कि, झील की सतह से 3 मीटर ऊपर, बिंदु P पर एक मंच पर खड़ा एक व्यक्ति बिंदु C पर एक बादल देखता है।

माना कि मंच की सतह से बादल की ऊंचाई h है और बादल का उन्नयन कोण θ1 है।

अब उसी बिंदु P पर एक व्यक्ति झील में बादल का प्रतिबिंब देखता है, इस समय झील में बादल के प्रतिबिंब की ऊंचाई (h + 3) है क्योंकि झील में मंच की ऊंचाई भी बादल के प्रतिबिंब में जोड़ी जाती है।

इसलिए, झील में अवनमन का कोण झील की सतह के ऊपर बादल के उन्नयन कोण से भिन्न होता है।

ΔMPC में,

tan θ1 = `"CM"/"PM" = "h"/"PM"`

⇒ `(tan θ_1)/"h" = 1/"PM"`  ...(i)

ΔCPM में,

tan θ2 = `"CM"/"PM"`

= `("OC" + "OM")/"PM"`

= `("h" + 3)/"PM"`

⇒ `(tan θ_2)/("h" + 3) = 1/"PM"`   ...(ii)

समीकरण (i) और (ii) से,

`(tan θ_1)/"h" = (tan θ_2)/("h" + 3)`

⇒ tan θ2 = `(("h" + 3)/"h") tan θ_1`

अतः, θ1 ≠ θ2

shaalaa.com
ऊँचाइयाँ और दूरियाँ
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: त्रिकोणमिति का परिचय और उसके अनुप्रयोग - प्रश्नावली 8.2 [पृष्ठ ९५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
पाठ 8 त्रिकोणमिति का परिचय और उसके अनुप्रयोग
प्रश्नावली 8.2 | Q 8. | पृष्ठ ९५

संबंधित प्रश्‍न

सर्कस का एक कलाकार एक 20m लंबी डोर पर चढ़ रहा है जो अच्छी तरह से तनी हुई है और भूमि पर सीधे लगे खंभे के शिखर से बंधा हुआ है। यदि भूमि स्तर के साथ डोर द्वारा बनाया गया कोण 30° का हो तो खंभे की ऊँचाई ज्ञात कीजिए। 


आँधी आने से एक पेड़ टूट जाता है और टूटा हुआ भाग इस तरह मुड़ जाता है की पेड़ का शिखर जमीन को छूने लगता है और इसके साथ 30° का कोण बनाता है। पेड़ के पाद-बिंदु की दूरी, जहाँ पेड़ का शिखर जमीन को छूता है, 8 मीटर है। पेड़ की उँचाई ज्ञात कीजिए।


भूमि के एक बिंदु से एक 20 मीटर ऊँचे भवन के शिखर पर लगी एक संचार मीनार के तल और शिखर के उन्नयन कोण क्रमश: 45° और 60° है। मीनार की ऊँचाई ज्ञात कीजिए।


एक पेडस्टल के शिखर पर एक 1.6 मीटर ऊँची मूर्ति लगी है। भूमि के एक बिंदु से मूर्ति के शिखर का उन्नयन कोण 60° है और उसी बिंदु से पेडस्टल के शिखर का उन्नयन कोण 45° है। पेडस्टल की ऊँचाई ज्ञात कीजिए।


7 m ऊँचे भवन के शिखर से एक केबल टॉवर के शिखर का उन्नयन कोण 60° है और इसके पाद का अवनमन कोण 45° है। टॉवर की ऊँचाई ज्ञात कीजिए।


समुद्र-तल से 75 m ऊँची लाइट हाउस के शिखर से देखने पर दो समुद्री जहाजों के अवनमन कोण 30° और 45° हैं। यदि लाइट हाउस के एक ही ओर एक जहाज दूसरे जहाज के ठीक पीछे हो तो दो जहाजों के बिच की दूरी ज्ञात कीजिए।


किसी बिंदु से एक मीनार की चोटी का उन्नयन कोण 30° है। यदि प्रेक्षक दीवार की ओर 20 मीटर चलता है, तो उन्नयन कोण में 15° की वृद्धि हो जाती है। मीनार की ऊँचाई ज्ञात कीजिए।


एक ऊर्ध्वाधर मीनार एक क्षैतिज समतल पर खड़ी है तथा उस पर h ऊँचाई का एक ऊर्ध्वाधर ध्वज-दंड लगा हुआ है। समतल के किसी बिंदु से ध्वज-दंड के निचले और ऊपरी सिरों के उन्नयन कोण क्रमश : α और β हैं। सिद्ध कीजिए कि मीनार की ऊँचाई `((h  tan alpha)/(tan beta - tan alpha))` है।


किसी ऊर्ध्वाधर मीनार की चोटी का भूमि पर स्थित किसी बिंदु से उन्नयन कोण 60° है। पहले बिंदु से 10 m उर्ध्वाधरत: ऊपर एक अन्य बिंदु पर उसका उन्नयन कोण 45° है। मीनार की उँचाई ज्ञात कीजिए।


किसी मकान की खिड़की भूमि से h m की ऊँचाई पर है। इस खिड़की से, सड़क के दूसरी ओर स्थित एक अन्य मकान के शिखर और आधार के क्रमशः उन्नयन और अवनमन कोण α और β पाए जाते हैं। सिद्ध कीजिए कि दूसरे मकान की ऊँचाई h(1 + tan α cot β) मीटर है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×