Advertisements
Advertisements
प्रश्न
किसी ऊर्ध्वाधर मीनार की चोटी का भूमि पर स्थित किसी बिंदु से उन्नयन कोण 60° है। पहले बिंदु से 10 m उर्ध्वाधरत: ऊपर एक अन्य बिंदु पर उसका उन्नयन कोण 45° है। मीनार की उँचाई ज्ञात कीजिए।
उत्तर
माना ऊर्ध्वाधर मीनार की ऊँचाई है,
OT = H m और OP = AB = x m
दिया गया है, AP = 10 m
और ∠TPO = 60°, ∠TAB = 45°
अब, ∆TPO में,
tan 60° = `"OT"/"OP" = "H"/x`
⇒ `sqrt(3) = "H"/x`
⇒ `x = "H"/sqrt(3)` ...(i)
और ∆TAB में,
tan 45° = `"TB"/"AB" = ("H" - 10)/x`
⇒ 1 = `("H" - 10)/x`
⇒ `x = "H" - 10`
⇒ `"H"/sqrt(3) = "H" - 10` ...[समीकरण (i) से]
⇒ `"H" - "H"/sqrt(3)` = 10
⇒ `"H"(1 - 1/sqrt(3))` = 10
⇒ `"H"((sqrt(3) - 1)/sqrt(3))` = 10
⇒ H = `(10sqrt(3))/(sqrt(3) - 1)`
∴ H = `(10sqrt(3))/(sqrt(3) - 1) * (sqrt(3) + 1)/(sqrt(3) + 1)` ...[युक्तिकरण द्वारा]
= `(10sqrt(3)(sqrt(3) + 1))/(3 - 1)`
= `(10sqrt(3)(sqrt(3) + 1))/2`
⇒ H = `5sqrt(3)(sqrt(3) + 1) = 5(sqrt(3) + 3) "m"`
अतः, मीनार की आवश्यक ऊंचाई `5(sqrt(3) + 3) "m"` है।
APPEARS IN
संबंधित प्रश्न
आँधी आने से एक पेड़ टूट जाता है और टूटा हुआ भाग इस तरह मुड़ जाता है की पेड़ का शिखर जमीन को छूने लगता है और इसके साथ 30° का कोण बनाता है। पेड़ के पाद-बिंदु की दूरी, जहाँ पेड़ का शिखर जमीन को छूता है, 8 मीटर है। पेड़ की उँचाई ज्ञात कीजिए।
भूमि के एक बिंदु से एक 20 मीटर ऊँचे भवन के शिखर पर लगी एक संचार मीनार के तल और शिखर के उन्नयन कोण क्रमश: 45° और 60° है। मीनार की ऊँचाई ज्ञात कीजिए।
एक सीधा राजमार्ग एक मीनार के पाद तक जाता है। मीनार के शिखर पर खड़ा एक आदमी एक कार को 30° के अवनमन कोण पर देखता है जो की मीनार के पाद की ओर एक समान चाल से जाता है। छ: सेकेंड बाद कार का अवनमन कोण 60° हो गया। इस बिंदु से मीनार के पाद तक पहुँचने में कार द्वारा लिया गया समय ज्ञात कीजिए।
मीनार के आधार से और एक सरल रेखा में 4 m और 9 m की दूरी पर स्थित दो बिंदुओं से मीनार के शिखर के उन्नयन कोण पूरक कोण हैं। सिद्ध कीजिए की मीनार की ऊँचाई 6 m है।
यदि एक मीनार की छाया की लंबाई बढ़ रही है, तो सूर्य का उन्नयन कोण भी बढ़ रहा है।
किसी मीनार की चोटी का उन्नयन कोण 30° है। यदि मीनार की ऊँचाई दुगुनी हो जाए, तो इसकी चोटी का उन्नयन कोण भी दुगुना हो जाएगा।
यदि एक मीनार की ऊँचाई तथा उसके आधार से प्रेक्षण बिंदु की दूरी दोनों ही 10% बढ़ जाते हैं, तो चोटी का उन्नयन कोण वही रहता है।
15 मीटर लंबी एक सीढ़ी एक ऊर्ध्वाधर दीवार के ठीक ऊपरी सिरे पर पहुँच पाती है। यदि सीढ़ी इस समय दीवार से 60° का कोण बनाती है, तो दीवार की ऊँचाई ज्ञात कीजिए।
1.5 मीटर ऊँचाई वाला एक प्रेक्षक 22 मीटर ऊँची एक मीनार से 20.5 मीटर की दूरी पर खड़ा है। प्रेक्षक की आँख से मीनार की चोटी का उन्नयन कोण निर्धारित कीजिए।
किसी मीनार के आधार से s और t की दूरियों पर स्थित दो बिंदुओं से मीनार की चोटी के उन्नयन कोण परस्पर पूरक हैं। सिद्ध कीजिए कि मीनार की ऊँचाई `sqrt(st)` है।