मराठी

किसी ऊर्ध्वाधर मीनार की चोटी का भूमि पर स्थित किसी बिंदु से उन्नयन कोण 60° है। पहले बिंदु से 10 m उर्ध्वाधरत: ऊपर एक अन्य बिंदु पर उसका उन्नयन कोण 45° है। मीनार की उँचाई ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

किसी ऊर्ध्वाधर मीनार की चोटी का भूमि पर स्थित किसी बिंदु से उन्नयन कोण 60° है। पहले बिंदु से 10 m उर्ध्वाधरत: ऊपर एक अन्य बिंदु पर उसका उन्नयन कोण 45° है। मीनार की उँचाई ज्ञात कीजिए।

बेरीज

उत्तर


माना ऊर्ध्वाधर मीनार की ऊँचाई है, 

OT = H m और OP = AB = x m

दिया गया है, AP = 10 m

और ∠TPO = 60°, ∠TAB = 45°

अब, ∆TPO में,

tan 60° = `"OT"/"OP" = "H"/x`

⇒ `sqrt(3) = "H"/x`

⇒ `x = "H"/sqrt(3)`  ...(i)

और ∆TAB में,

tan 45° =  `"TB"/"AB" = ("H" - 10)/x`

⇒ 1 = `("H" - 10)/x`

⇒ `x = "H" - 10`

⇒ `"H"/sqrt(3) = "H" - 10`  ...[समीकरण (i) से]

⇒ `"H" - "H"/sqrt(3)` = 10

⇒ `"H"(1 - 1/sqrt(3))` = 10

⇒ `"H"((sqrt(3) - 1)/sqrt(3))` = 10

⇒ H = `(10sqrt(3))/(sqrt(3) - 1)`

∴ H = `(10sqrt(3))/(sqrt(3) - 1) * (sqrt(3) + 1)/(sqrt(3) + 1)`  ...[युक्तिकरण द्वारा]

= `(10sqrt(3)(sqrt(3) + 1))/(3 - 1)`

= `(10sqrt(3)(sqrt(3) + 1))/2`

⇒ H = `5sqrt(3)(sqrt(3) + 1) = 5(sqrt(3) + 3) "m"`

अतः, मीनार की आवश्यक ऊंचाई `5(sqrt(3) + 3) "m"` है।

shaalaa.com
ऊँचाइयाँ और दूरियाँ
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: त्रिकोणमिति का परिचय और उसके अनुप्रयोग - प्रश्नावली 8.4 [पृष्ठ १०२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
पाठ 8 त्रिकोणमिति का परिचय और उसके अनुप्रयोग
प्रश्नावली 8.4 | Q 16. | पृष्ठ १०२

संबंधित प्रश्‍न

आँधी आने से एक पेड़ टूट जाता है और टूटा हुआ भाग इस तरह मुड़ जाता है की पेड़ का शिखर जमीन को छूने लगता है और इसके साथ 30° का कोण बनाता है। पेड़ के पाद-बिंदु की दूरी, जहाँ पेड़ का शिखर जमीन को छूता है, 8 मीटर है। पेड़ की उँचाई ज्ञात कीजिए।


भूमि के एक बिंदु से एक 20 मीटर ऊँचे भवन के शिखर पर लगी एक संचार मीनार के तल और शिखर के उन्नयन कोण क्रमश: 45° और 60° है। मीनार की ऊँचाई ज्ञात कीजिए।


एक सीधा राजमार्ग एक मीनार के पाद तक जाता है। मीनार के शिखर पर खड़ा एक आदमी एक कार को 30° के अवनमन कोण पर देखता है जो की मीनार के पाद की ओर एक समान चाल से जाता है। छ: सेकेंड बाद कार का अवनमन कोण 60° हो गया। इस बिंदु से मीनार के पाद तक पहुँचने में कार द्वारा लिया गया समय ज्ञात कीजिए।


मीनार के आधार से और एक सरल रेखा में 4 m और 9 m की दूरी पर स्थित दो बिंदुओं से मीनार के शिखर के उन्नयन कोण पूरक कोण हैं। सिद्ध कीजिए की मीनार की ऊँचाई 6 m है।


यदि एक मीनार की छाया की लंबाई बढ़ रही है, तो सूर्य का उन्नयन कोण भी बढ़ रहा है।


किसी मीनार की चोटी का उन्नयन कोण 30° है। यदि मीनार की ऊँचाई दुगुनी हो जाए, तो इसकी चोटी का उन्नयन कोण भी दुगुना हो जाएगा।


यदि एक मीनार की ऊँचाई तथा उसके आधार से प्रेक्षण बिंदु की दूरी दोनों ही 10% बढ़ जाते हैं, तो चोटी का उन्नयन कोण वही रहता है।


15 मीटर लंबी एक सीढ़ी एक ऊर्ध्वाधर दीवार के ठीक ऊपरी सिरे पर पहुँच पाती है। यदि सीढ़ी इस समय दीवार से 60° का कोण बनाती है, तो दीवार की ऊँचाई ज्ञात कीजिए।


1.5 मीटर ऊँचाई वाला एक प्रेक्षक 22 मीटर ऊँची एक मीनार से 20.5 मीटर की दूरी पर खड़ा है। प्रेक्षक की आँख से मीनार की चोटी का उन्नयन कोण निर्धारित कीजिए।


किसी मीनार के आधार से s और t की दूरियों पर स्थित दो बिंदुओं से मीनार की चोटी के उन्नयन कोण परस्पर पूरक हैं। सिद्ध कीजिए कि मीनार की ऊँचाई `sqrt(st)` है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×